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The monadic second-order (MSO) theory of (N, <)

Biichi 1962
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In MSO(N, <) we can express divisibility by a given n, basic modular arithmetic.
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Introduced Biuchi automata

<+ Non-deterministic Biichi automata = MSO logic W=reguilq;

(N, <) ¢ < LA, #0 languages

<4 Obrained decidability of MSO(N, <)

( )

Given a MSO formula ¢, is ¢ true in (N, <) ?
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The MSO theory of (Q, <) and the full binary tree

|

we\‘f“
Rabin 1969 8xh‘em9m PO
4 Obrained decidability of MSO(Q, <)

and MSO(znfinite binary tree).



The MSO theory of (Q, <) and the full binary tree

4 Obrained decidability of MSO(Q, <)
and MSO(znfinite binary tree).

Introduced automata over infinite trees

Introduced richer acceptance conditions
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b
b

ﬂ T Q Boolean Combination of

-@—@—@ Sates appearing

nfinitely moany times

b
/ (Muller condition)
Inf.0ften(®) or Fin.Often(®)

Muller 1963, McNaughton 1966

Rabin condition: A sort of simple DNF for these formulas

Necessary for using:
o Deterministic w-automata

o« Automata over infinite trees
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Church’s synthesis problem for MSO

Biichi-Landweber 1969 McNaughton 1966



Church’s synthesis problem for MSO

I alphabet of input symbols

¢ a specification over sequences in ([ O)w

O alphabet of output symbols

complete it on-the-fly 11011909 - + + € ([O)w
—
stream of input symbols satistying ¢

11 12 13 - . .

Church synthesis problem

Given ¢, decide whether there is a finite-state program (circuit, transducer)
producing outputs on-the-fly, ensuring that ¢ is satisfied.
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producing outputs on-the-fly, ensuring that ¢ is satisfied.
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+ Decidability of the synthesis problem for specifications in MSO

Using games on graphs



games on graphs

s i3
% : 12§‘ Player O wins if the final output

|:| satisfies @
V\ 0;

Winning strategy tor O «—— Program for Church’s problem

THEOREM

If ¢ € MSO (i.e., w-regular), these games are determined and the winner
has a strategy given by a finite automaton.

It is decidable if O can win.
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Gurevich-Harrington 1982 Mostowski 1984 Emerson-Jutla 1991

+ Simpler proof of Rabin’s theorem using game-theoretic ideas

+ Parity condition



Parity condition

O wins if the maximal number appearing inﬁnitely often is even

3
/ O <4 “Normal form” for Rabin conditions

@ Simplest condition for recognizing all w-reg. languages

~()
Q OA vsing deterministic avtomata
v

2 THEOREM (positional determinacy of parity games)

In a parity game, the winner has a positional strategy

Numbers in strat: Vertices — Edges

states/vertices



. . *Extremely partial
Some hlStO r lCal 1960 account of works

| Muller] ==
ConteXt 'McNaughton ]
|Rabin| F [Biichi-Landweber]|
e QE [ [

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[Staiger—Waéler]

| Wagner| ¢ [Ehrenfeucht-Mycielski |
1980

[Gurevich-Harrington] F [Clarke-Emerson-Sistla]
| Mostowski| 4 [Streett-Emerson]

Model Checking

P 1 [Vardi-Wolper]
T= |Safra] - ,
Pnueli-Rosner]
| Emerson-Jutla]
L(A) = Words containing ‘aa’ infinitely often C >
Input: Infinite words w = abaabbaaa... € 2 2000

Biichi condition: We accept it @ visited infinitely often

Why should we care?

2020



Emerson-Clarke-Sistla 1983 Sifakis 1982 Vardi-Wolper 1986

Model checking

‘ Does a program satisfy a given specification? \
Efficient Linear Temporal Logic synthesis
‘ Given a specification, build a program that satisfies it. \

Pnueli-Rosner 1989
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Y FACT

In general, there is no unique minimal deterministic w-automata

for a given w-regular language.

(Van, Le Saéc, Litovsky ‘95)

Characterization of languages L that admit a unique minimal

deterministic Muller automaton.
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Both models are equivalent



From states to transitions

No extra states needed



From transitions to states

a Q/a\A

P (A )t

L(A) = Words containing ‘aa’ infinitely often

We may need to double the number of states



ﬂ”{ 5
Both models are equivalent

From states to transitions From transitions to states

() O PN o
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" b L(A) = Words containing ‘aa’ infinitely often

No extra states needed
We may need to double the number of states
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4 Transition-based automata are smaller

From transitions to states optimally:

Input: Transition-based Biichi automaton

What is the minimal number of states that we need to

uestion: . . .
d duplicate to obtain an equivalent state-based automaton?

> This problem is NP-complete!  (Schewe 09-C.23 :a”fc[
P plete! (Schewe 09 - C. )”a” a,



Minimisation

A landscape of problems



States Transitions

» THEOREM (Schewe ‘09)

Minimisation of deterministic The redoction does
state-based Biichi automata is NP-complete. not generalise

X THEOREM (Schewe ‘20) <4 THEOREM (Abu Radi-Kupferman ‘19)
Minimisation of state=based history— Minimisation of transitions-based history-
deterministic coBiichi automata is deterministic coBuichi automata in PTIME.

NP-complete.
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Minimisation Determinisation

States Transitions
/‘//'gh[y

tech .
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@ THEOREM (Schewe ‘09)
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A landscape of problems



[Safra 88] e .
ND Biichi Automaton —m8 ———— Deterministic Rabin

[Piterman 06], [Schewe ‘29 ) Automaton
""3

Automaton of size

Automaton of size n N
‘ det(n) ~ (1.66n)"

(s
+ THEOREM (tight bounds) (Colcombet-Zdanowski ‘09) T oW ve T

There are ND Biichi automata of size n, such that a minimal equivalent O ‘S‘W‘Tg '
transition-based deterministic Rabin automaton has size exactly det(n).

X No such tight bounds for state-based automata



Minimisation
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Automata Transformations

Determinisation
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i Automaton of size
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There are ND Biichi automata of size n, such that a minimal equivalent o S‘mﬁ ’
transition-based deterministic Rabin automaton has size exactly det(n).

X No such tight bounds for state-based automata

roblems



Generalised-Bluichi Automaton
{ 9 ‘2 9 e 9 ‘k } e
See all colours inf. often

Buchi Automaton (Extra states)
See e inf. often



Generalised-Blichi Automaton (always possible)
{ 9 9 oo 9‘1(} EEEE—
See all colours inf. often

Buchi Automaton (Extra states)
See e inf. often

Input: Generalised-Biichi automaton

What is the minimal number of states that we need to

Question: , , T
duplicate to define an equivalent Blichi automaton?

THEOREM (C.-Colcombet-Fijalkow 21) X THEOREM (C. 23
] (

PTIME for transition-based automata. NP-complete for state-based automata.



Minimisation

States Transitions
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Automata Transformations

Generalised-Biichi Automaton (always possible)
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Input: Generalised-Biichi automaton

What is the minimal number of states that we need to

Question: i ) o
duplicate to define an equivalent Biichi automaton?
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Determinisation
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transition-based deterministic Rabin automaton has size exactly det(n).

X No such tight bounds for state-based automata

roblems

Positionality in games



< THEOREM (Mostowsk: ‘84, Emerson-Jutla “91)

Games using a parity language as winning condition are positionally determined.

parityjoq; = {w € |0,d]” | limsup w is even}

< THEOREM (Colcombet-Niwitiski ‘06)

prefix-independent
The only languages L such that all games with condition L are

positionally determined are parity languages.

;

Over tropai: X No characterisation for state-coloured games.
NSition-poge 9ames|
es!



Why all these differences?

A natural algebraic operation

- -
s——_’

“’ Compositionality X No natural way of composing transitions

“’ Connections with algebra [ Wilke ‘91, LeSaéc-Pin-Weil ‘91, Colcomber “11]

"’ Saturation techniques [Colcombet-Fijalkow ‘18, Oblmann 23, C.-Oblmann 25]



Conclusion
Transition-based models are better fitted for both

theoretical and practical purposes.

Recent (transition-based) canonical models

All w-regolar languages

<4 HD-coBiichi automata 4 Chains of HD-coBiichi automata (Eblers-Schewe 22)

(Abu Radi-Kupferman 19)
+ Rerailing automata (Eblers 25)

A subclass of

S
w-regolar angUOge <+ Layered automata (C.-Loding-Walukiewicz. Soon on arxiv!)

« Canonicity expressed in terms of morphisms

» Congruence-based characterization
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Conclusion
Transition-based models are better fitted for both
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Recent (transition-based) canonical models
All w-regolar languages
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« Canonicity expressed in terms of morphisms

« Congruence-based characterization

Thanks for your attention!



