

TRANSITION-BASED
ACCEPTANCE

VS

STATE-BASED
ACCEPTANCE

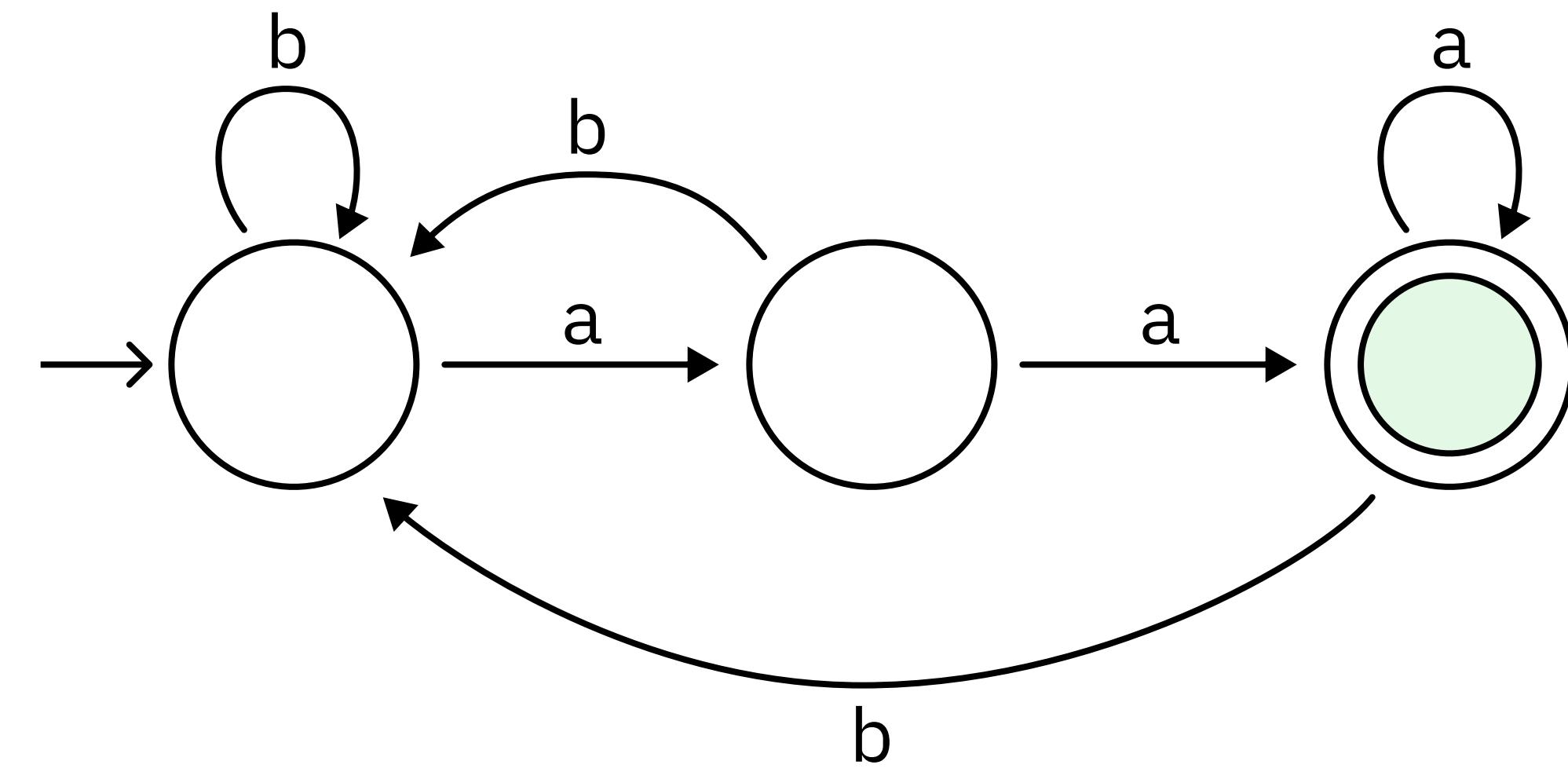
FOR ω -AUTOMATA

Antonio Casares Santos

RPTU Kaiserslautern

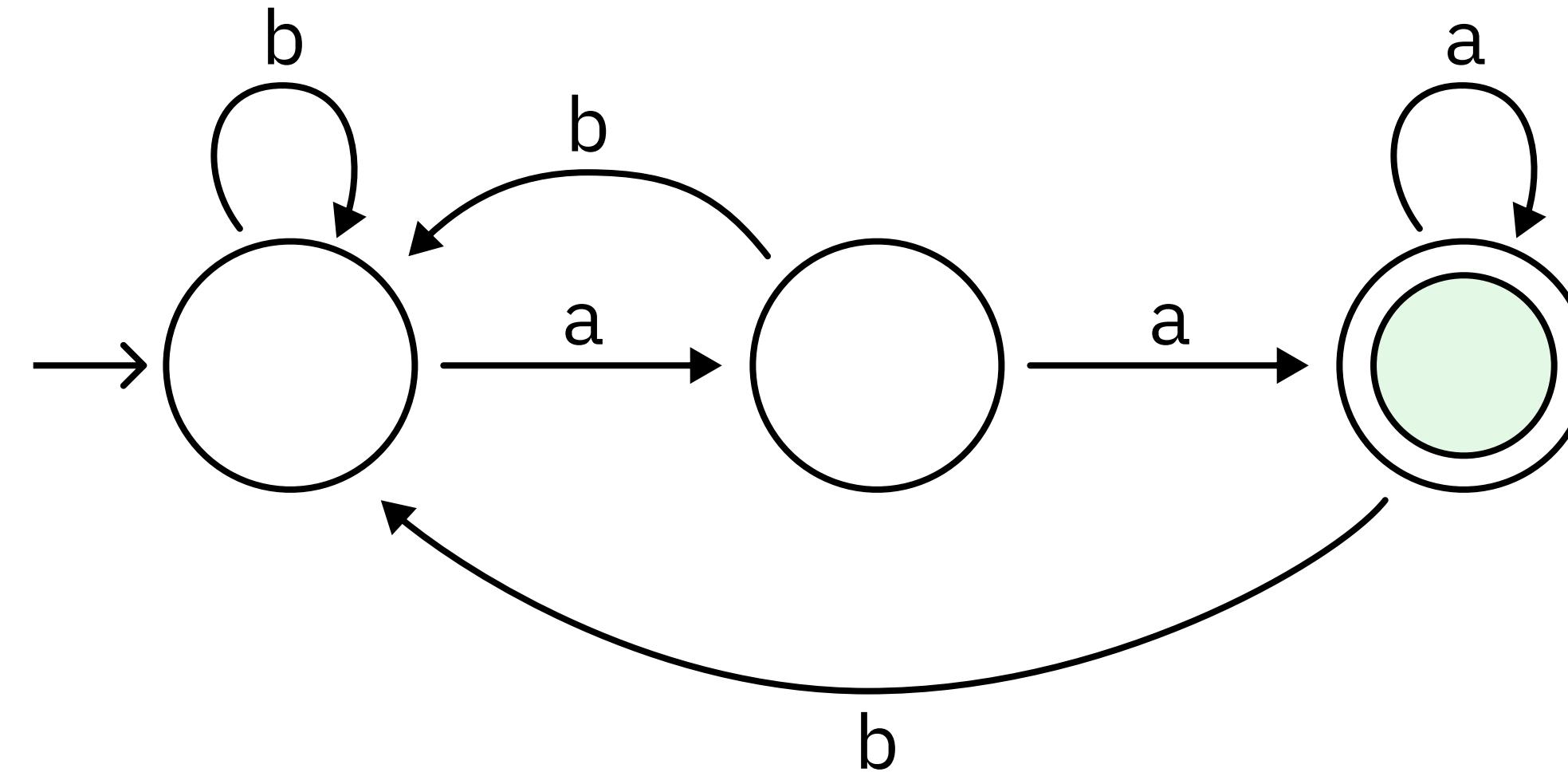
Link to
the survey

An automaton



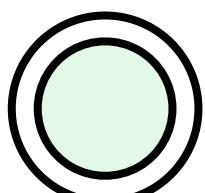
$\mathcal{L}(\mathcal{A})$ = Words ending in 'aa'

An ω -automaton



$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

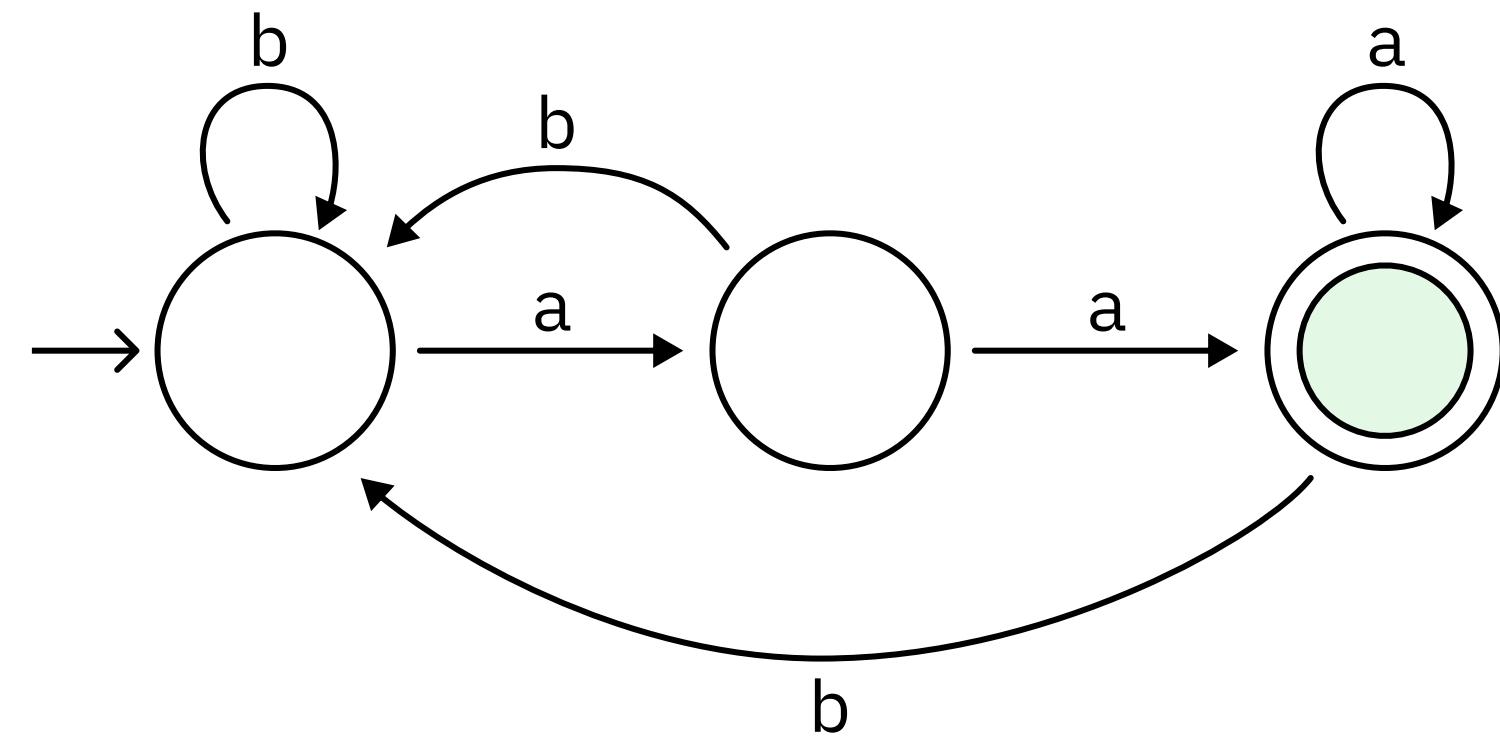
Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

Büchi condition: We accept if  visited infinitely often

Why should we care?

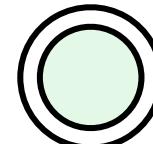
Some historical context

An ω -automaton



$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

Büchi condition: We accept if  visited infinitely often

Why should we care?

1960

1980

2000

2020



The monadic second-order (MSO) theory of $(\mathbb{N}, <)$

Büchi 1962

monadic second-order (MSO) logic

- First order logic connectives $\neg\varphi$ $\varphi \vee \psi$ $\varphi \wedge \psi$ $\exists x$ $\forall x$

- Quantification over sets $\exists X$ $\forall X$ $x \in X$

$$\exists X \forall y \exists x \quad x \in X \wedge x > y \quad \longleftrightarrow \quad \text{There is an unbounded set}$$

In $\text{MSO}(\mathbb{N}, <)$ we can express divisibility by a given n , basic modular arithmetic.

The monadic second-order (MSO) theory of $(\mathbb{N}, <)$

- First order logic connectives $\neg\varphi$ $\varphi \vee \psi$ $\varphi \wedge \psi$ $\exists x$ $\forall x$

- Quantification over sets $\exists X$ $\forall X$ $x \in X$

$\exists X \forall y \exists x \ x \in X \wedge x > y \iff$ There is an unbounded set

$(\mathbb{N}, <) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, \dots\}$

In $\text{MSO}(\mathbb{N}, <)$ we can express divisibility by a given n , basic modular arithmetic.

Büchi 1962

Infinite word over the
unary alphabet $\{\bullet\}$

The monadic second-order (MSO) theory of $(\mathbb{N}, <)$

- First order logic connectives $\neg\varphi$ $\varphi \vee \psi$ $\varphi \wedge \psi$ $\exists x$ $\forall x$

- Quantification over sets $\exists X$ $\forall X$ $x \in X$

$$\exists X \forall y \exists x \ x \in X \wedge x > y \iff \text{There is an unbounded set}$$

$(\mathbb{N}, <) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, \dots\}$

In MSO($\mathbb{N}, <$) we can express divisibility by a given n , basic modular arithmetic.

Infinite word over the unary alphabet $\{\bullet\}$

Büchi 1962

Introduced Büchi automata

Non-deterministic Büchi automata \equiv MSO logic

$$(\mathbb{N}, <) \models \varphi \iff L(\mathcal{A}_\varphi) \neq \emptyset$$

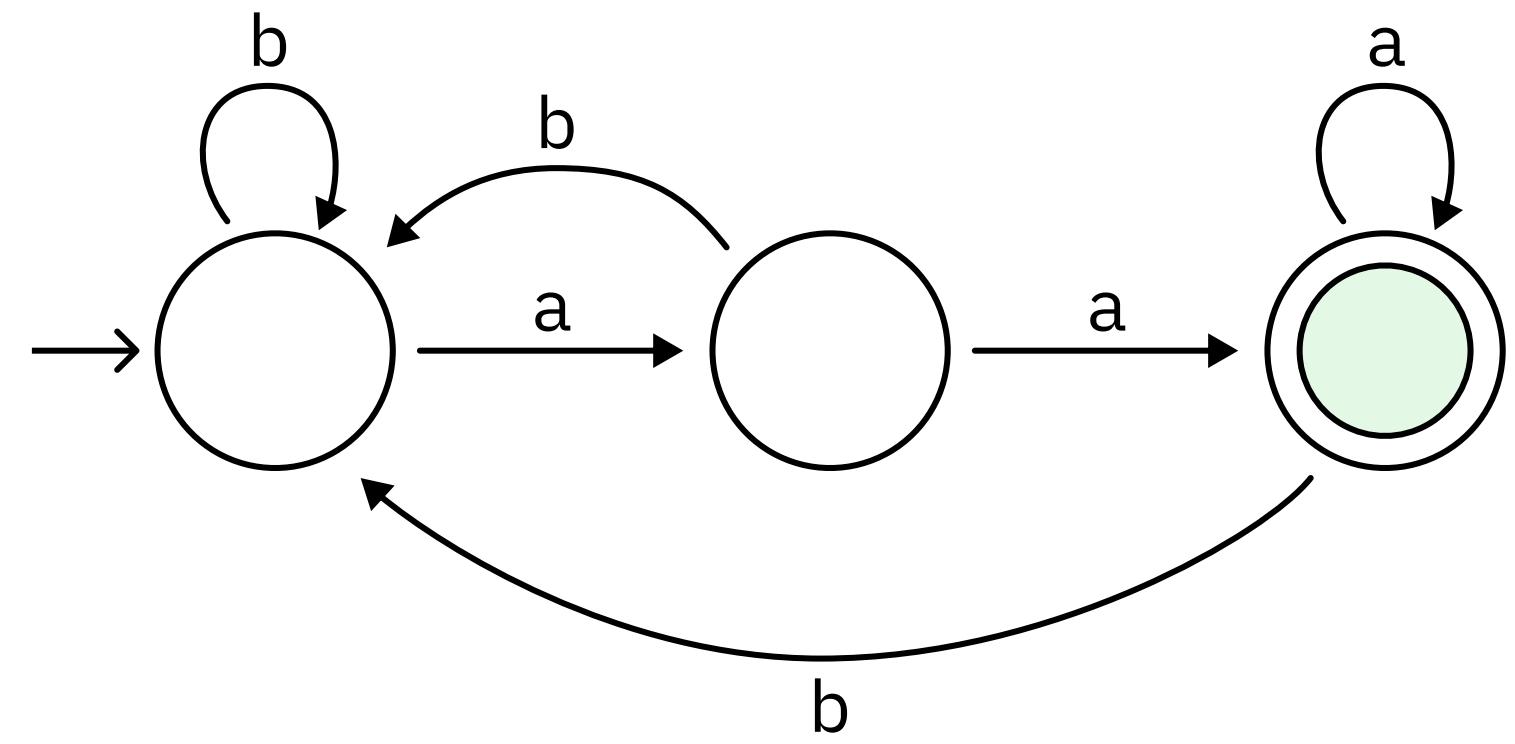
ω -regular languages

Obtained decidability of MSO($\mathbb{N}, <$)

Given a MSO formula φ , is φ true in $(\mathbb{N}, <)$?

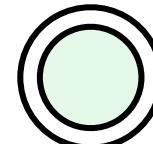
Some historical context

An ω -automaton

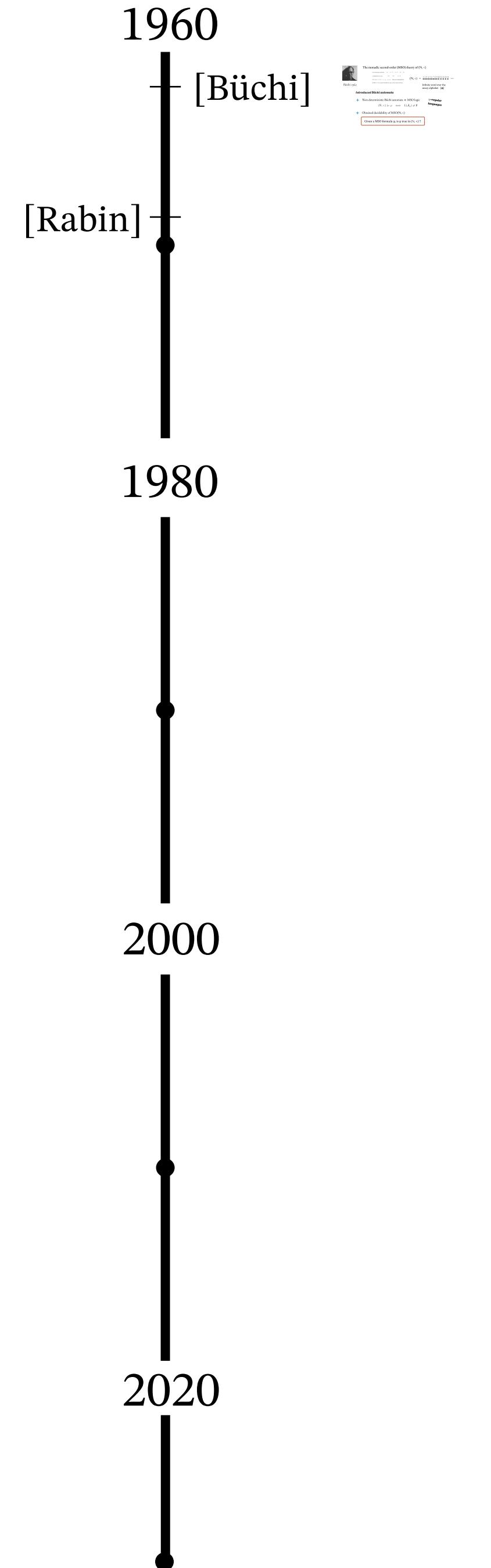


$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

Büchi condition: We accept if  visited infinitely often

Why should we care?



Rabin 1969

The MSO theory of $(\mathbb{Q}, <)$ and the full binary tree

Extremely powerful!

- Obtained decidability of $\text{MSO}(\mathbb{Q}, <)$ and $\text{MSO}(\text{infinite binary tree})$.

Extremely complex proof!!

The MSO theory of $(\mathbb{Q}, <)$ and the full binary tree

Rabin 1969

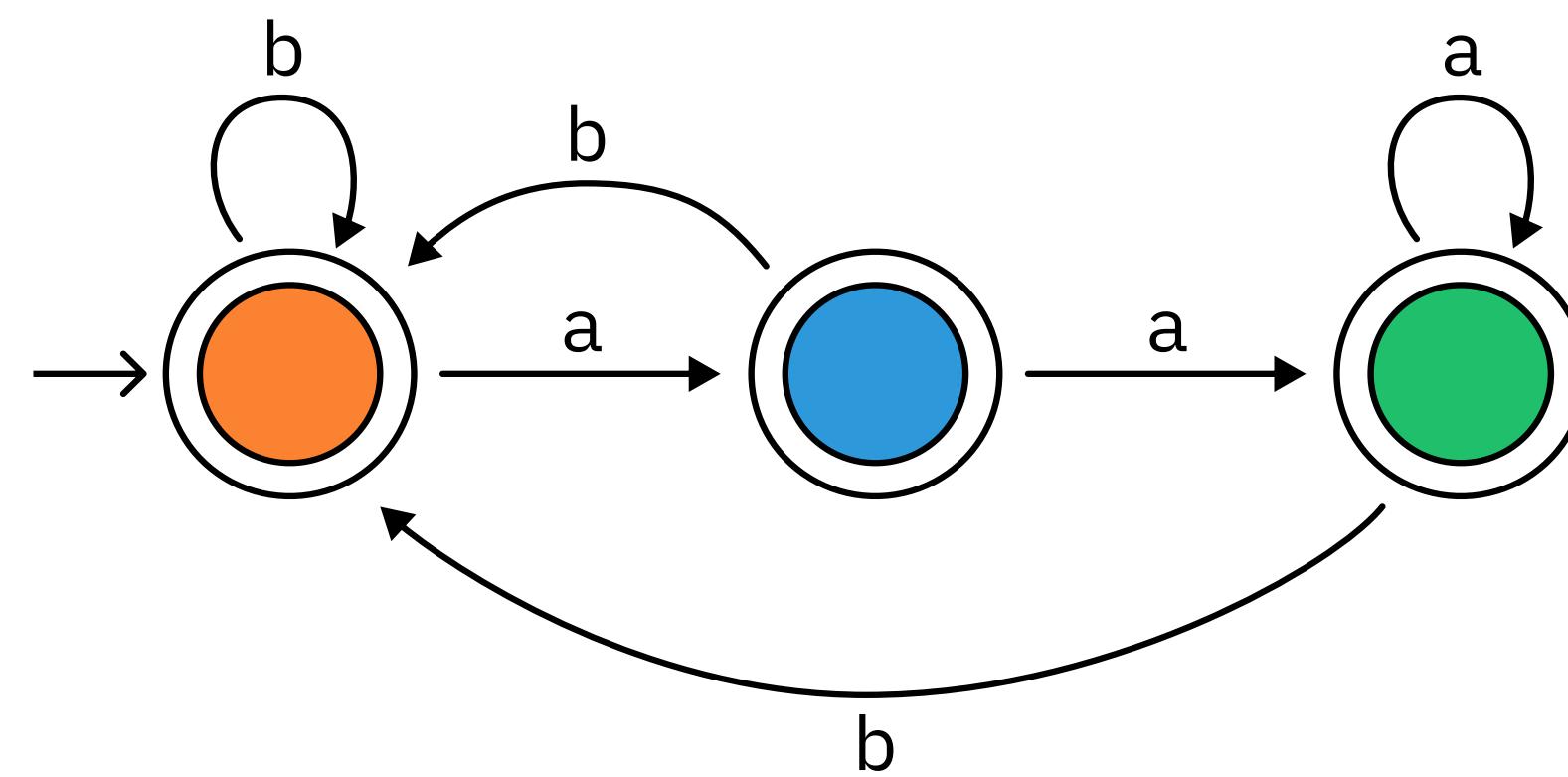
Extremely powerful!

- ★ Obtained decidability of $\text{MSO}(\mathbb{Q}, <)$ and $\text{MSO}(\text{infinite binary tree})$.

*Extremely
complex proof!!*

Introduced automata over infinite trees

Introduced richer acceptance conditions



Inf. Often (●) or Fin. Often (○)

Boolean combination of
states appearing
infinitely many times

(Muller condition)

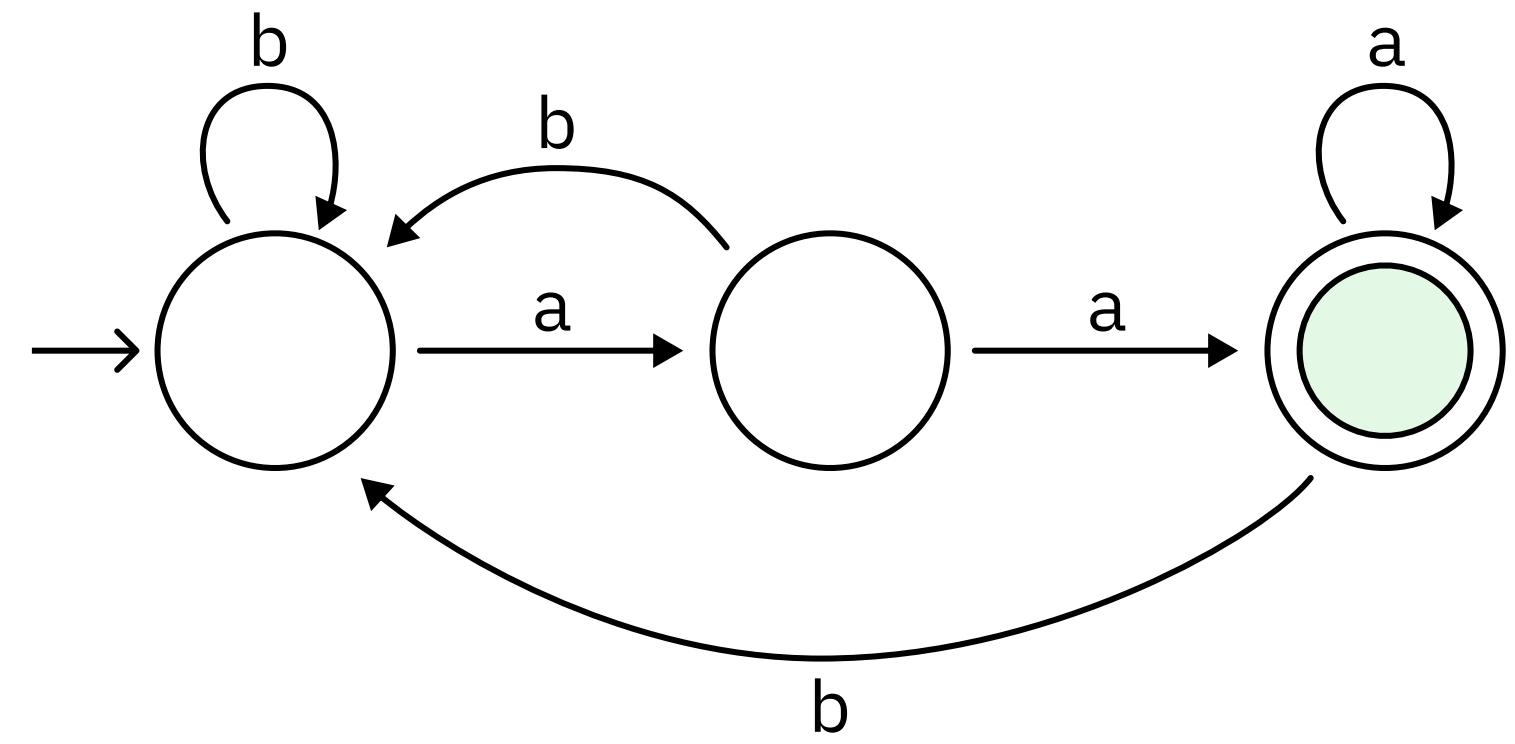
Muller 1963, McNaughton 1966

Rabin condition: A sort of simple DNF for these formulas

Necessary for using:

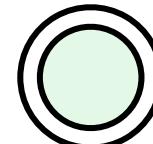
- Deterministic ω -automata
- Automata over infinite trees

An ω -automaton

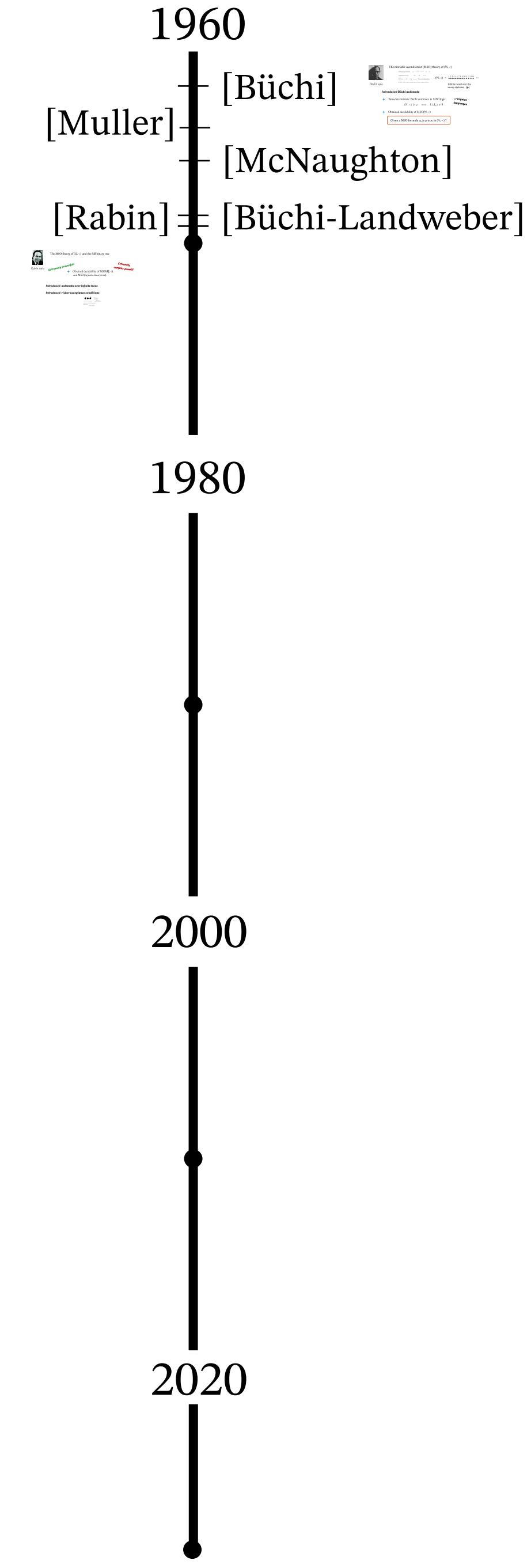


$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

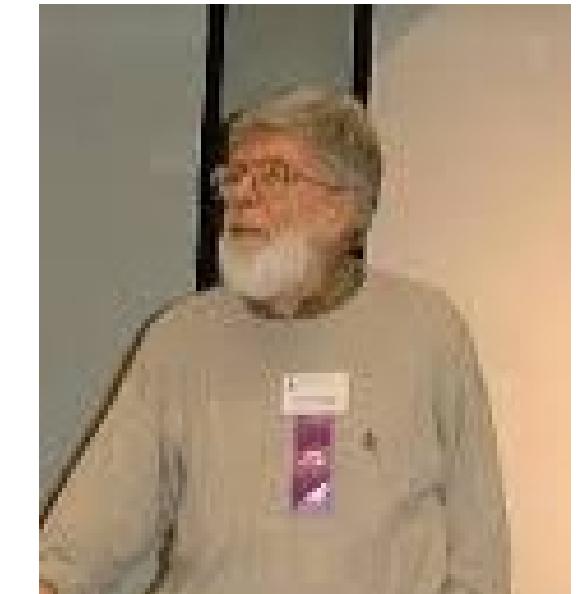
Büchi condition: We accept if  visited infinitely often

Some historical context



Why should we care?

Church's synthesis problem for MSO



Büchi-Landweber 1969

McNaughton 1966

Church's synthesis problem for MSO

I alphabet of input symbols

φ a specification over sequences in $(IO)^\omega$

O alphabet of output symbols

$i_1 \ i_2 \ i_3 \dots$
stream of input symbols

complete it on-the-fly

$i_1 o_1 i_2 o_2 \dots \in (IO)^\omega$
satisfying φ

Church synthesis problem

Given φ , decide whether there is a finite-state program (circuit, transducer) producing outputs on-the-fly, ensuring that φ is satisfied.

Church's synthesis problem for MSO

I alphabet of input symbols

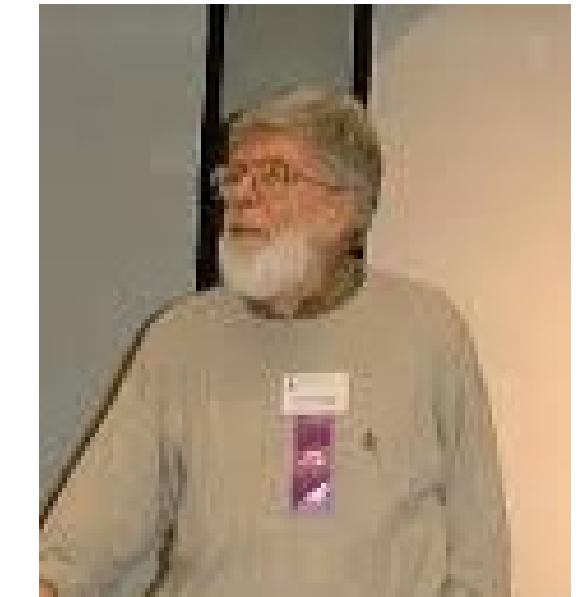
O alphabet of output symbols

φ a specification over sequences in $(IO)^\omega$

$i_1 i_2 i_3 \dots$ $\xrightarrow{\text{complete it on-the-fly}}$ $i_1 o_1 i_2 o_2 \dots \in (IO)^\omega$

stream of input symbols

satisfying φ



Büchi-Landweber 1969

Church synthesis problem

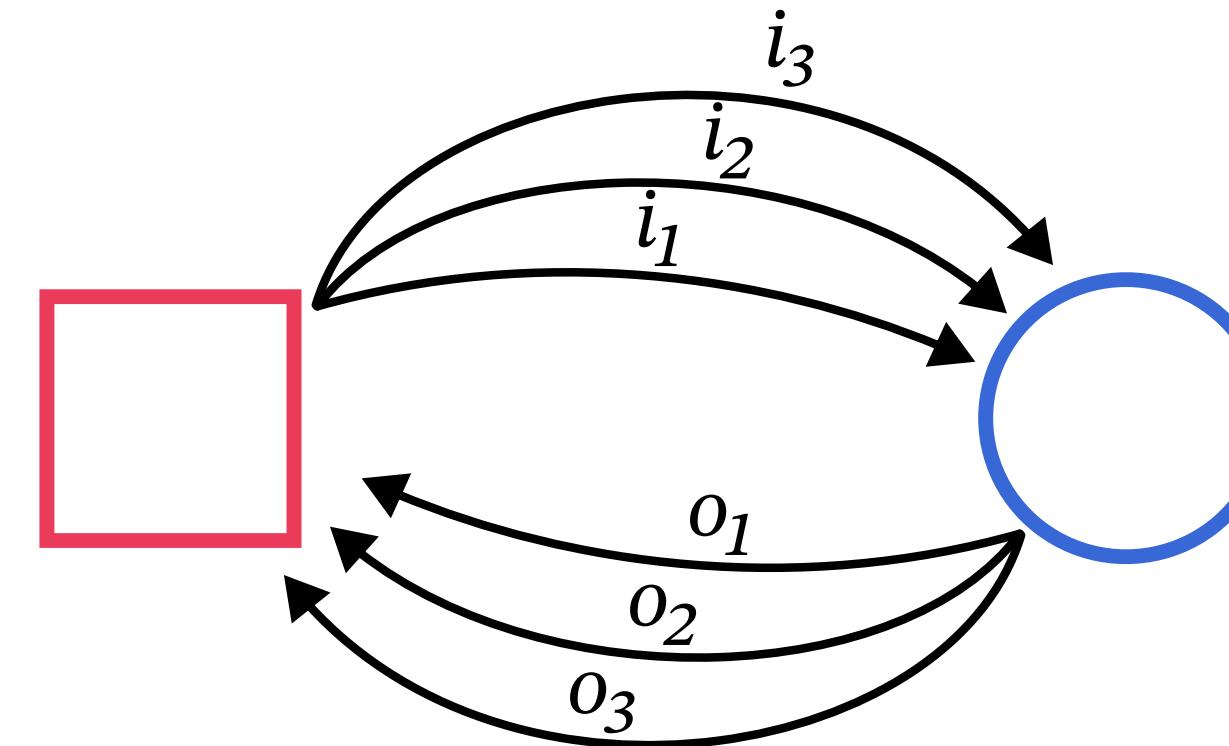
Given φ , decide whether there is a finite-state program (circuit, transducer) producing outputs on-the-fly, ensuring that φ is satisfied.

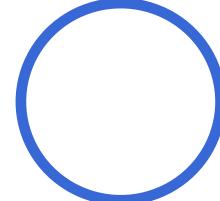
McNaughton 1966

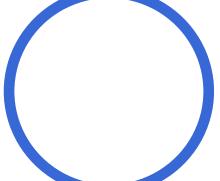
- ★ Decidability of the synthesis problem for specifications in MSO

Using games on graphs

games on graphs



Player  wins if the final output satisfies φ

Winning strategy for  \longleftrightarrow Program for Church's problem

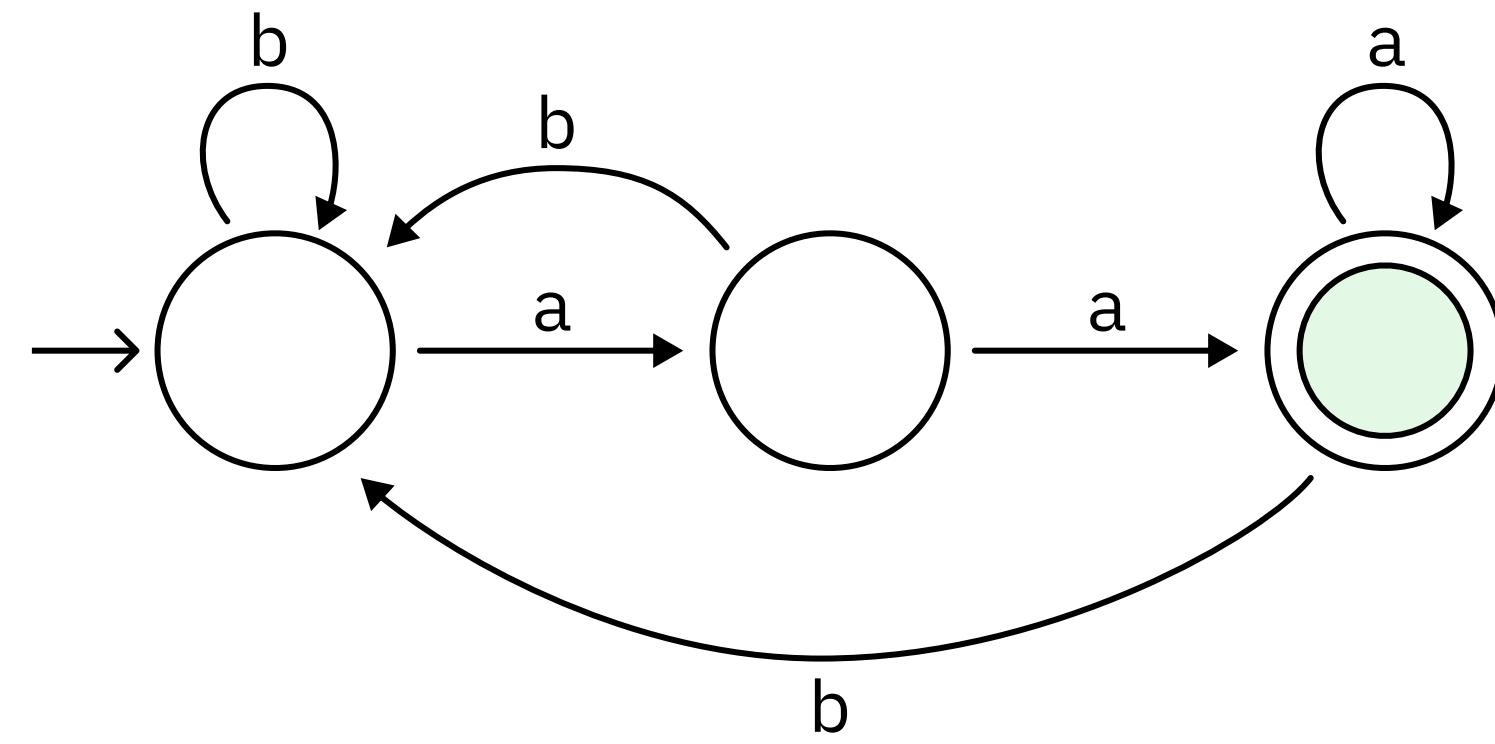
THEOREM

If $\varphi \in \text{MSO}$ (i.e., ω -regular), these games are determined and the winner has a strategy given by a finite automaton.

It is decidable if can win.

Some historical context

An ω -automaton



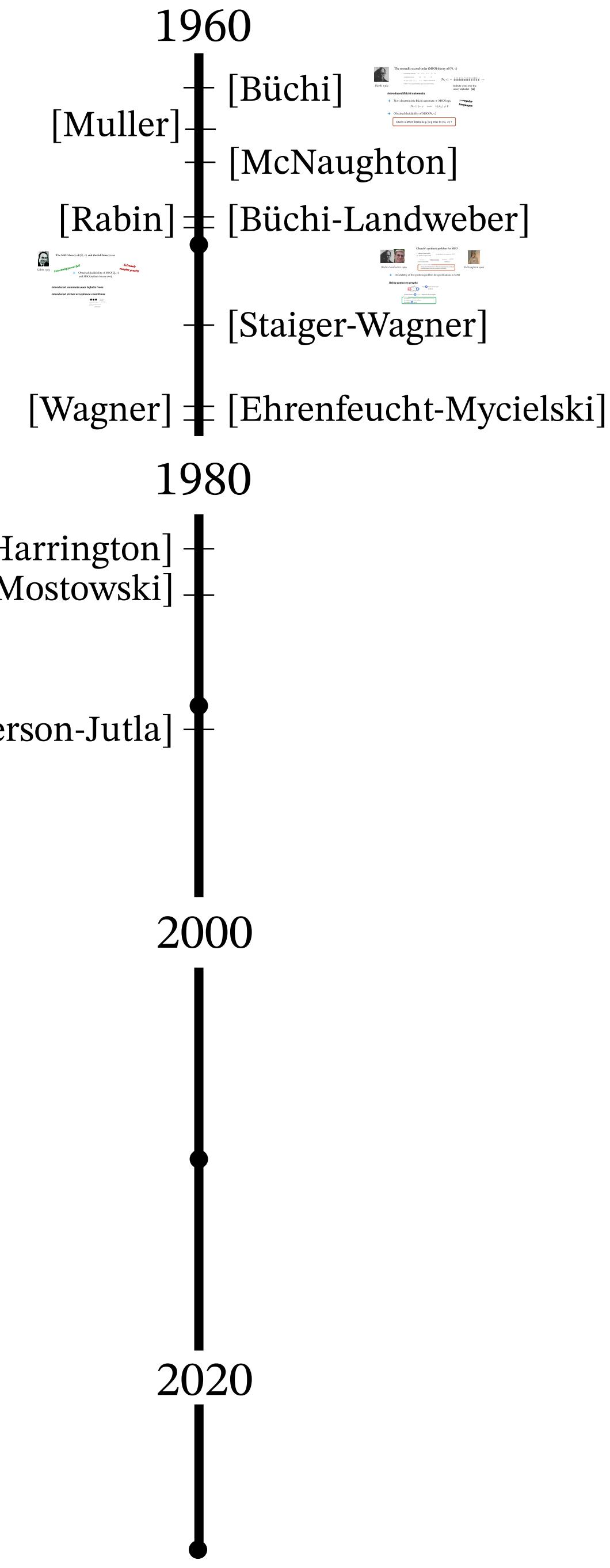
$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

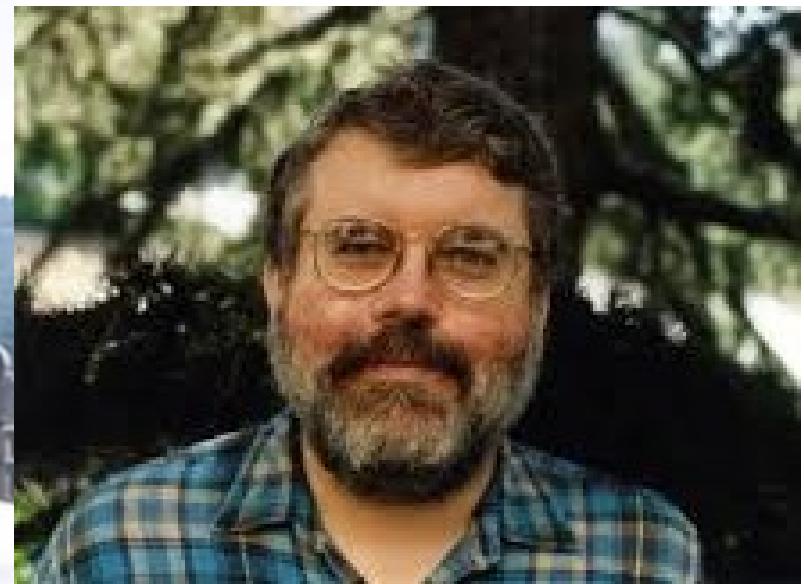
Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

Büchi condition: We accept if visited infinitely often

Why should we care?

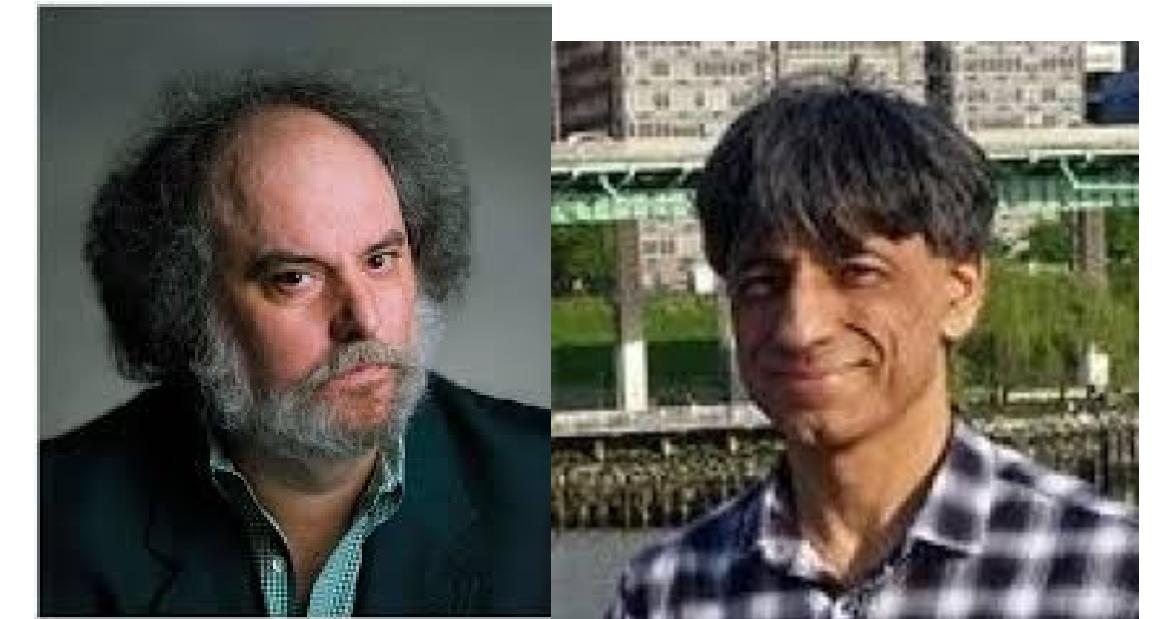
*Extremely partial
account of works





Gurevich-Harrington 1982

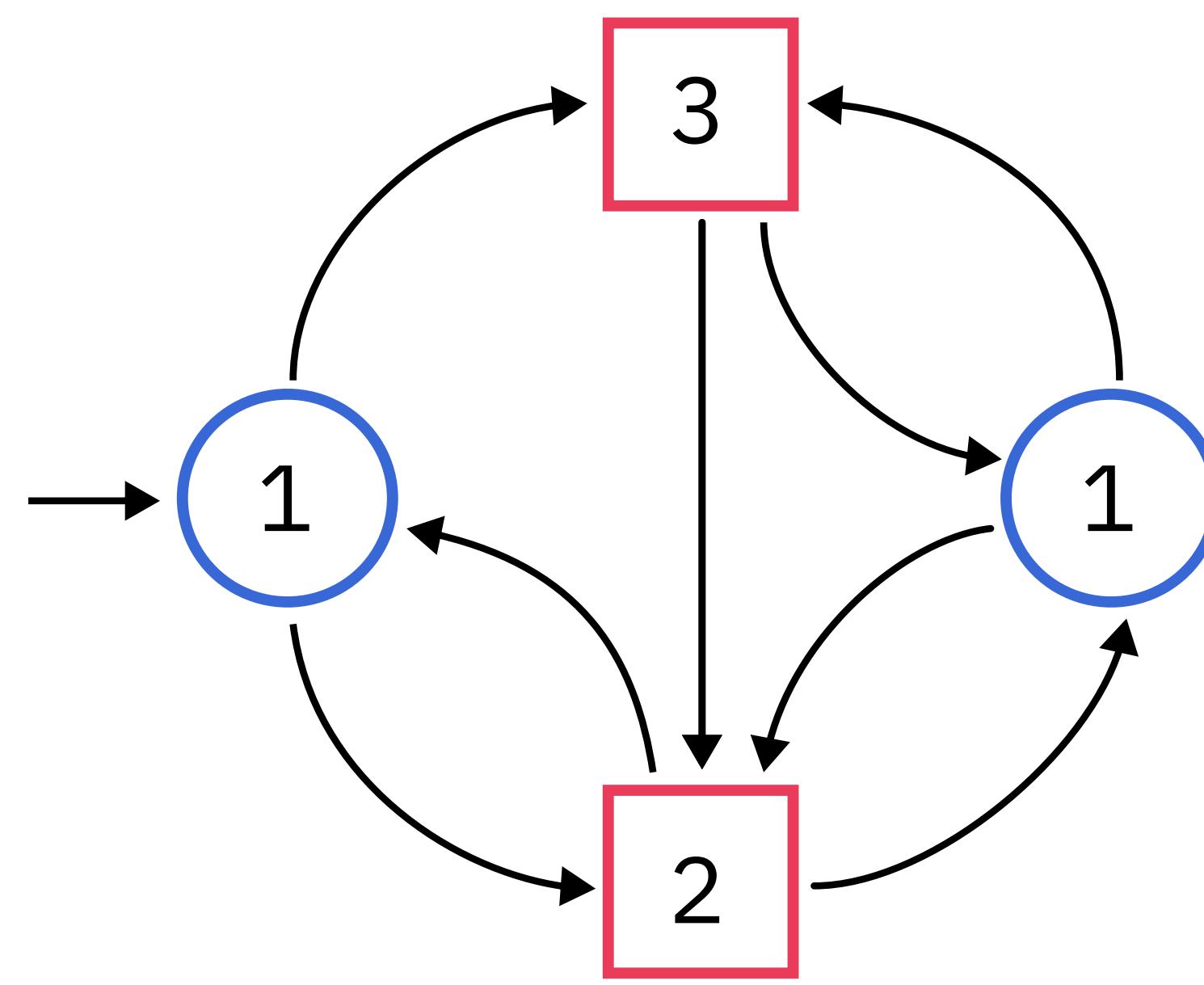
Mostowski 1984



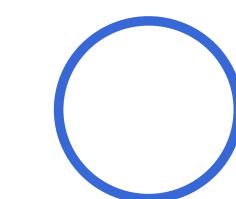
Emerson-Jutla 1991

- ★ Simpler proof of Rabin's theorem using game-theoretic ideas
- ★ Parity condition

Parity condition



Numbers in
states/vertices



\bigcirc wins if the maximal number appearing infinitely often is even

★ “Normal form” for Rabin conditions

Simplest condition for recognizing all ω -reg. languages
using deterministic automata

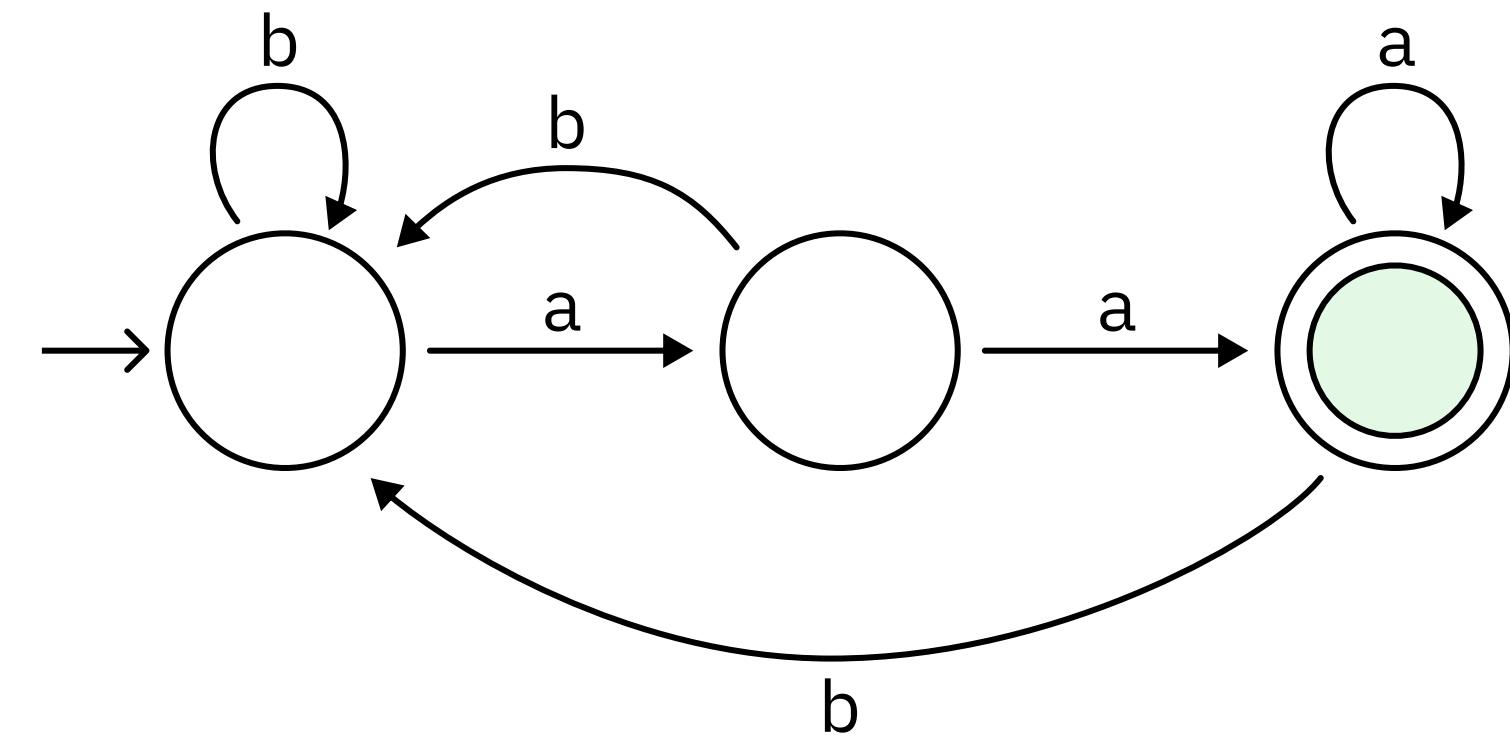
THEOREM (positional determinacy of parity games)

In a parity game, the winner has a *positional* strategy

strat: Vertices \rightarrow Edges

Some historical context

An ω -automaton

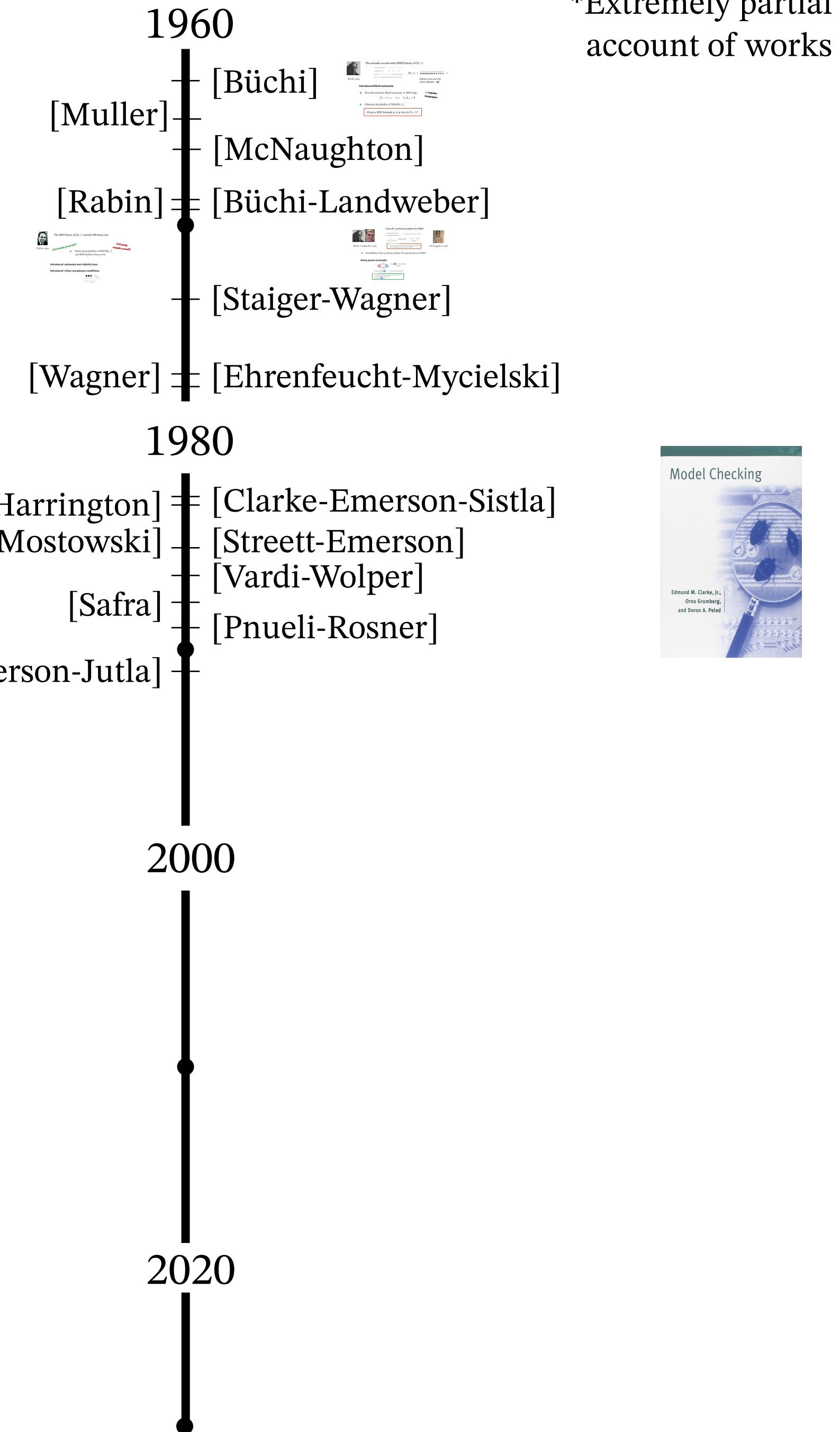


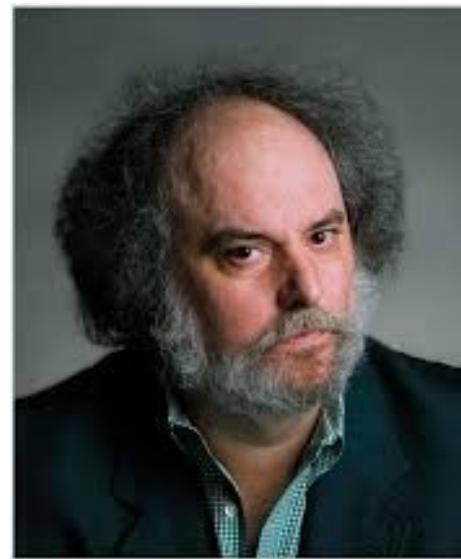
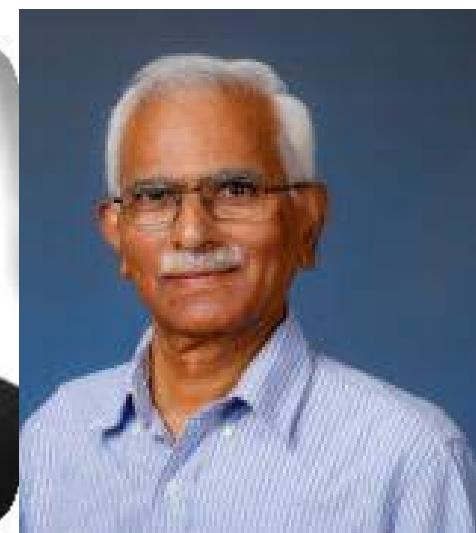
$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

B\"uchi condition: We accept if visited infinitely often

Why should we care?





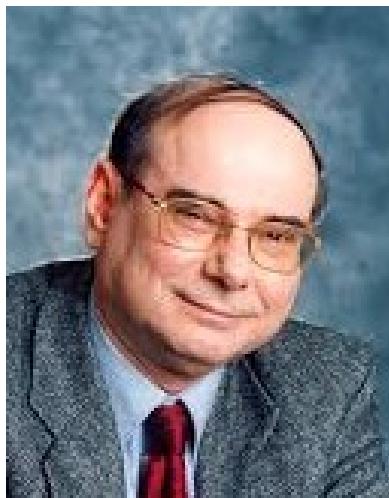
Emerson-Clarke-Sistla 1983

Sifakis 1982

Vardi-Wolper 1986

Model checking

Does a program satisfy a given specification?



Efficient *Linear Temporal Logic* synthesis

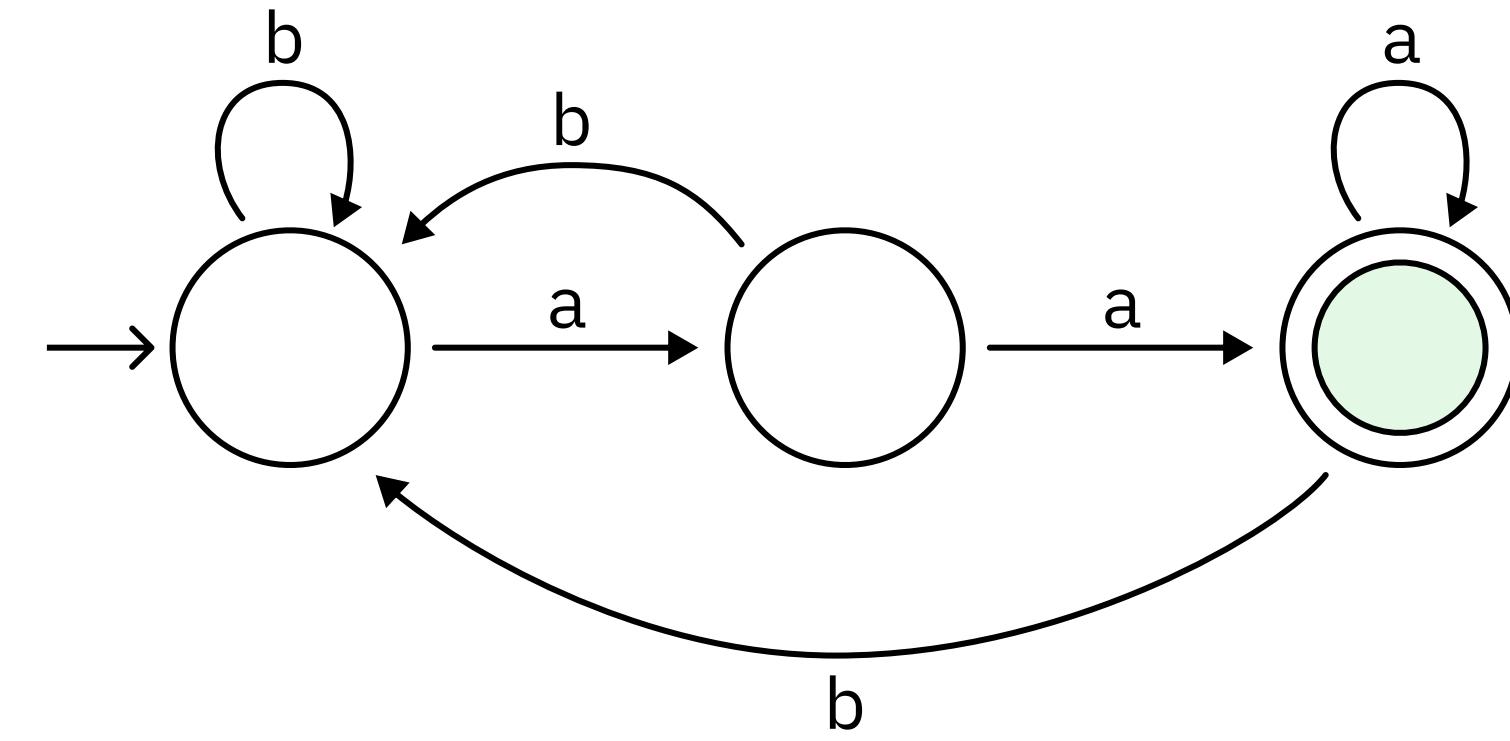
Given a specification, build a program that satisfies it.

Pnueli-Rosner 1989

Some historical context

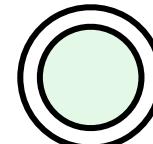
*Extremely partial account of works

An ω -automaton

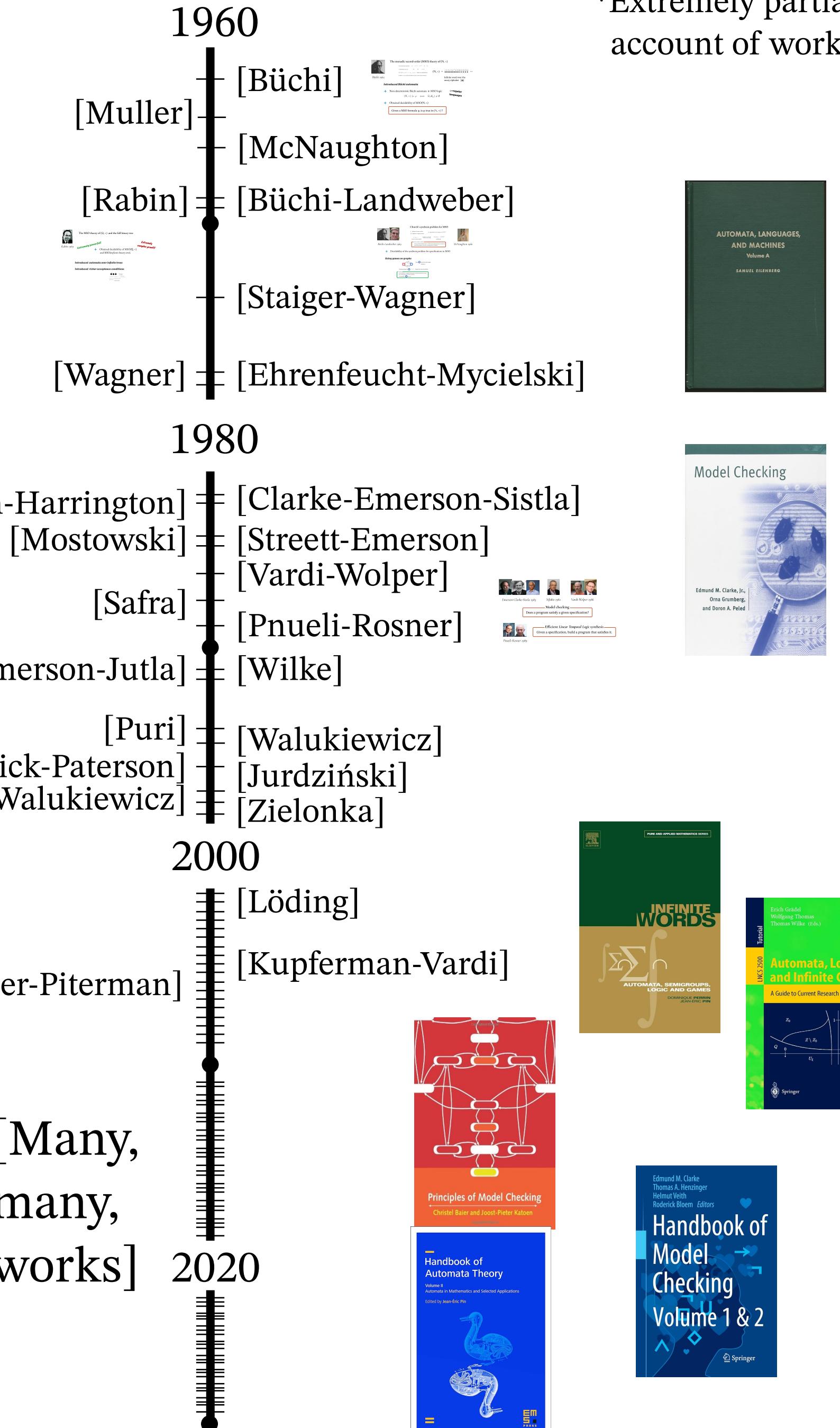


$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Input: Infinite words $w = abaabbaaa\dots \in \Sigma^\omega$

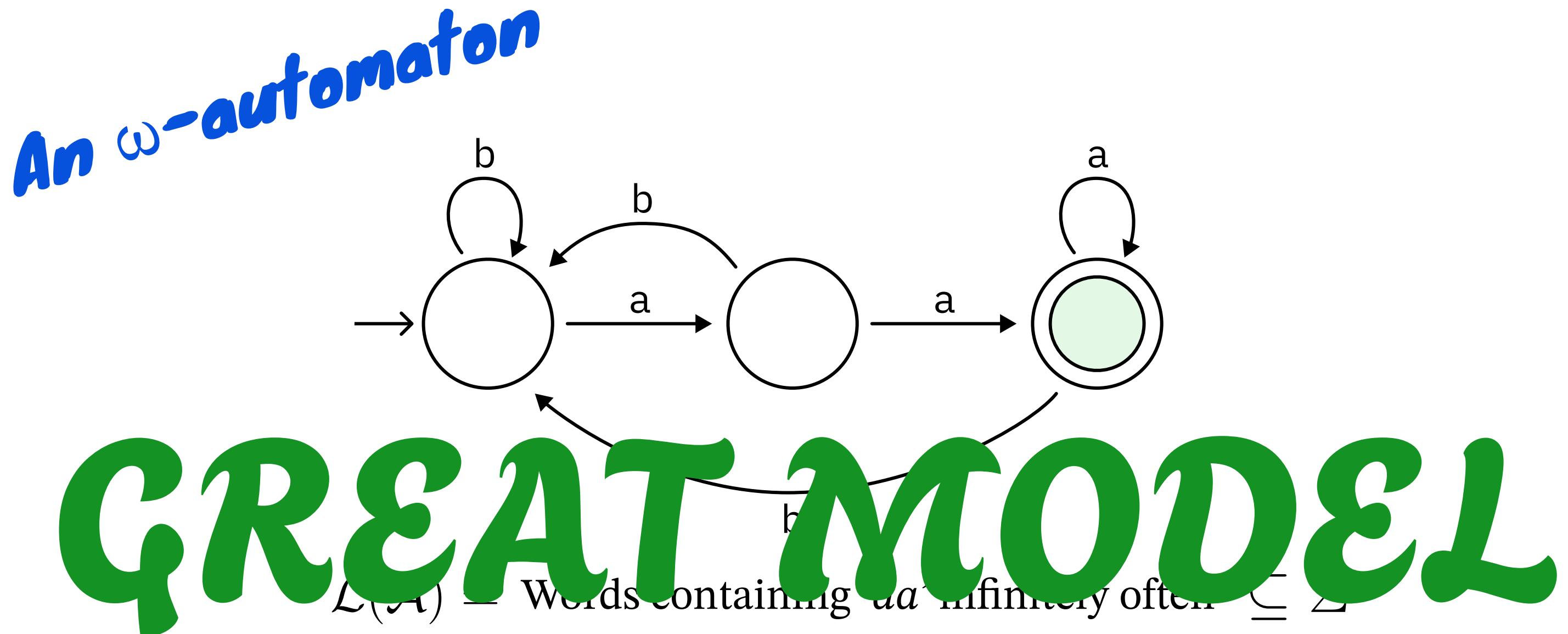
B\"uchi condition: We accept if  visited infinitely often

Why should we care?



Some historical context

*Extremely partial account of works



Input: Infinite words $w = abaabbbaa\dots \in \Sigma^\omega$

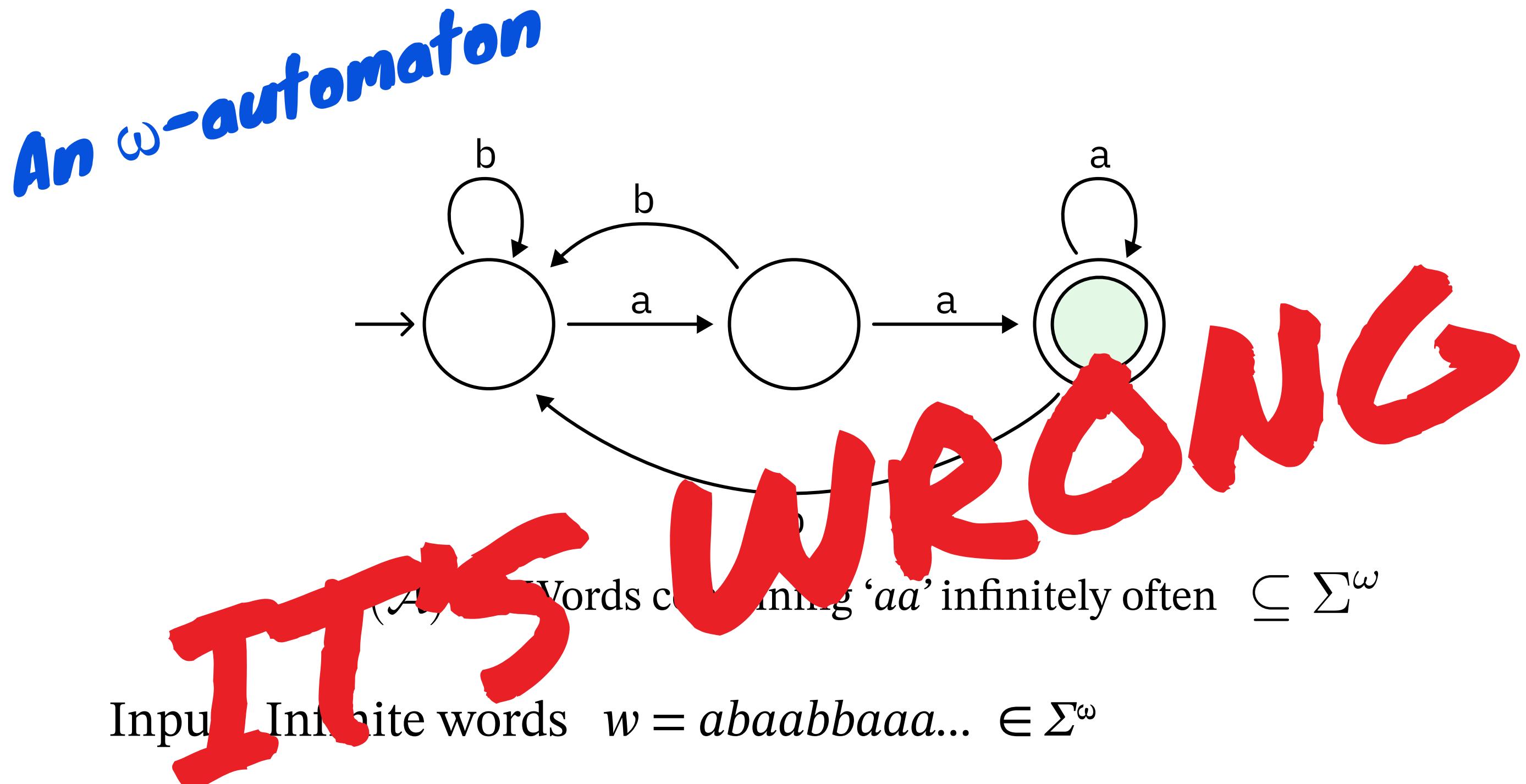
Büchi condition: We accept if visited infinitely often

Why should we care?

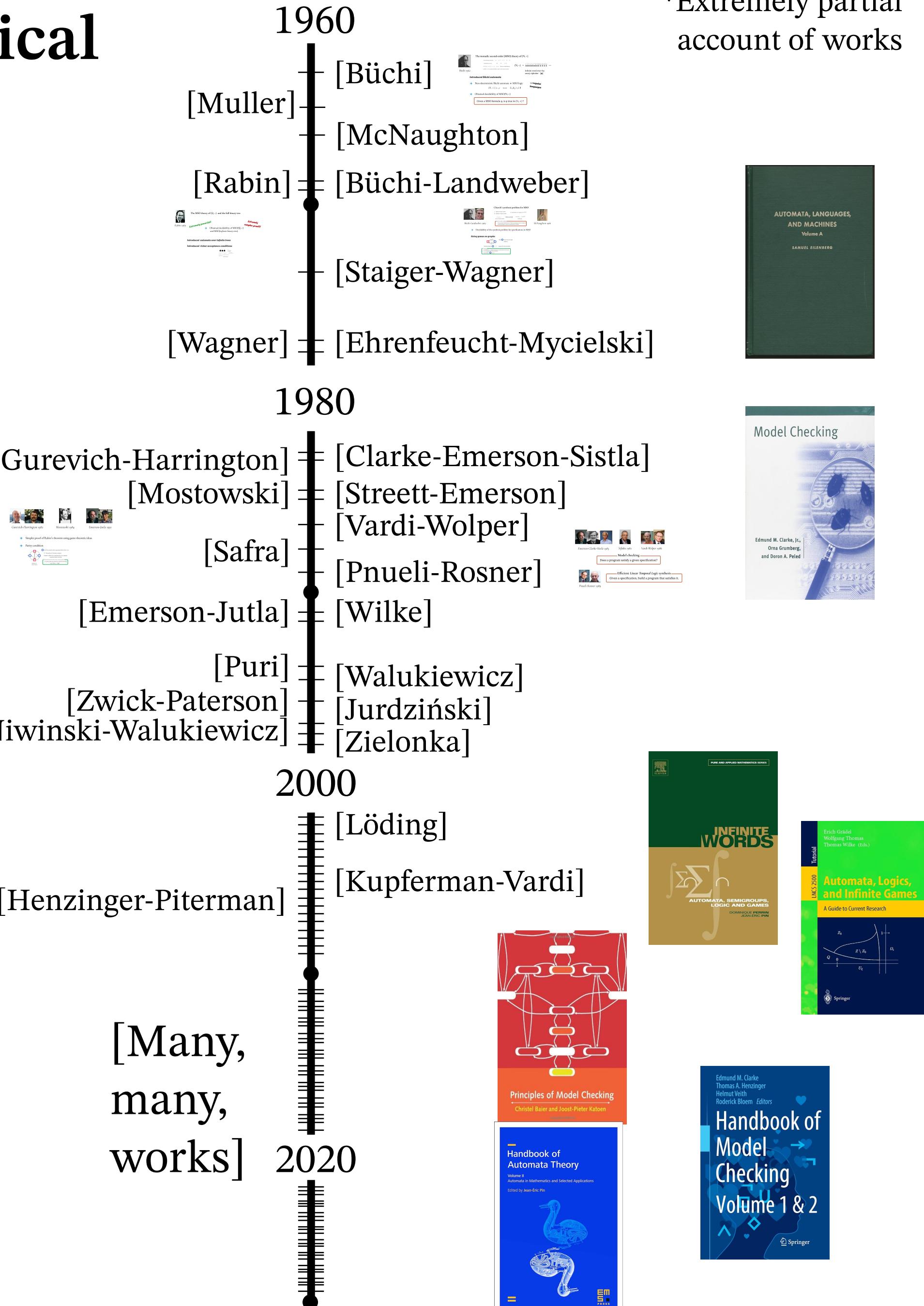


Some historical context

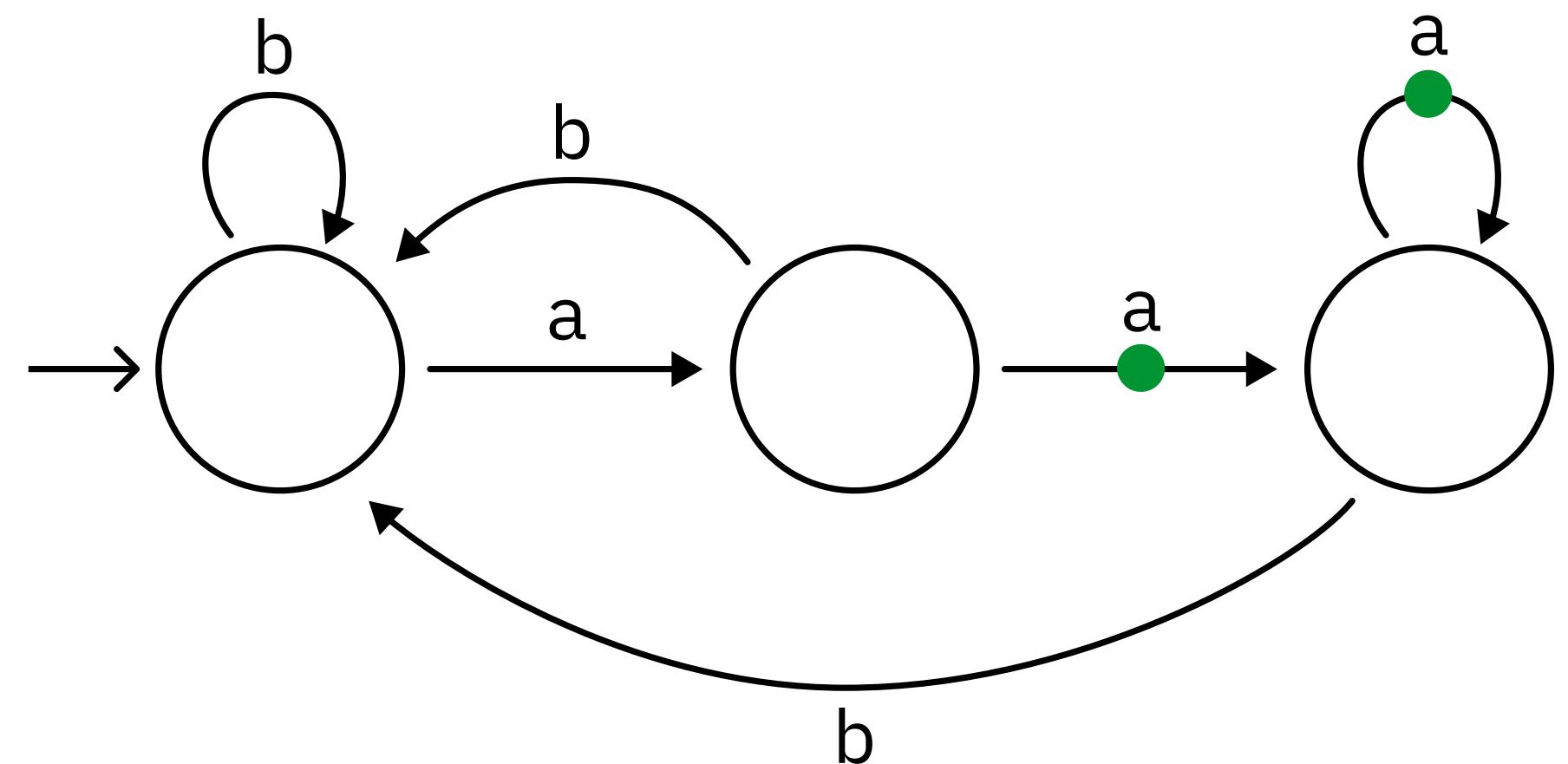
*Extremely partial account of works



Why should we care?



A transition-based ω -automaton

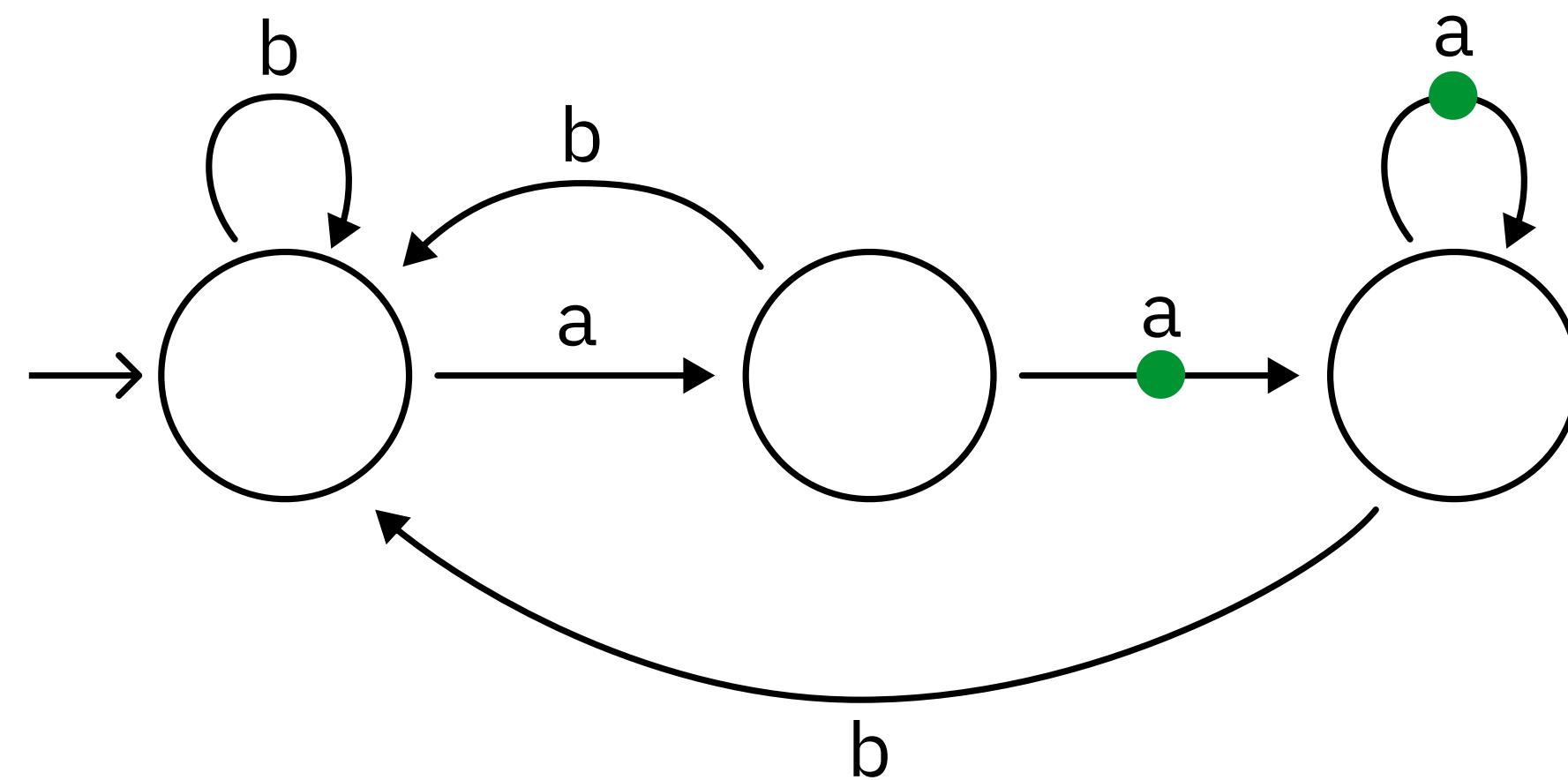


$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Büchi condition: We accept if visited infinitely often

Similar for Rabin, parity...

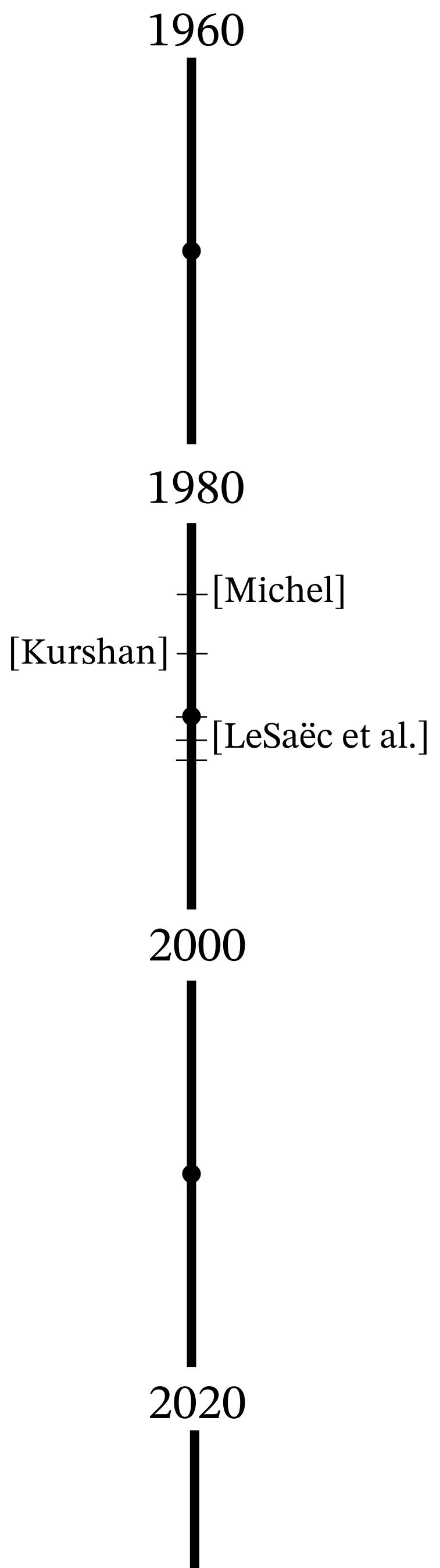
A transition-based ω -automaton



$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

Büchi condition: We accept if visited infinitely often

Similar for Rabin, parity...



✖ FACT

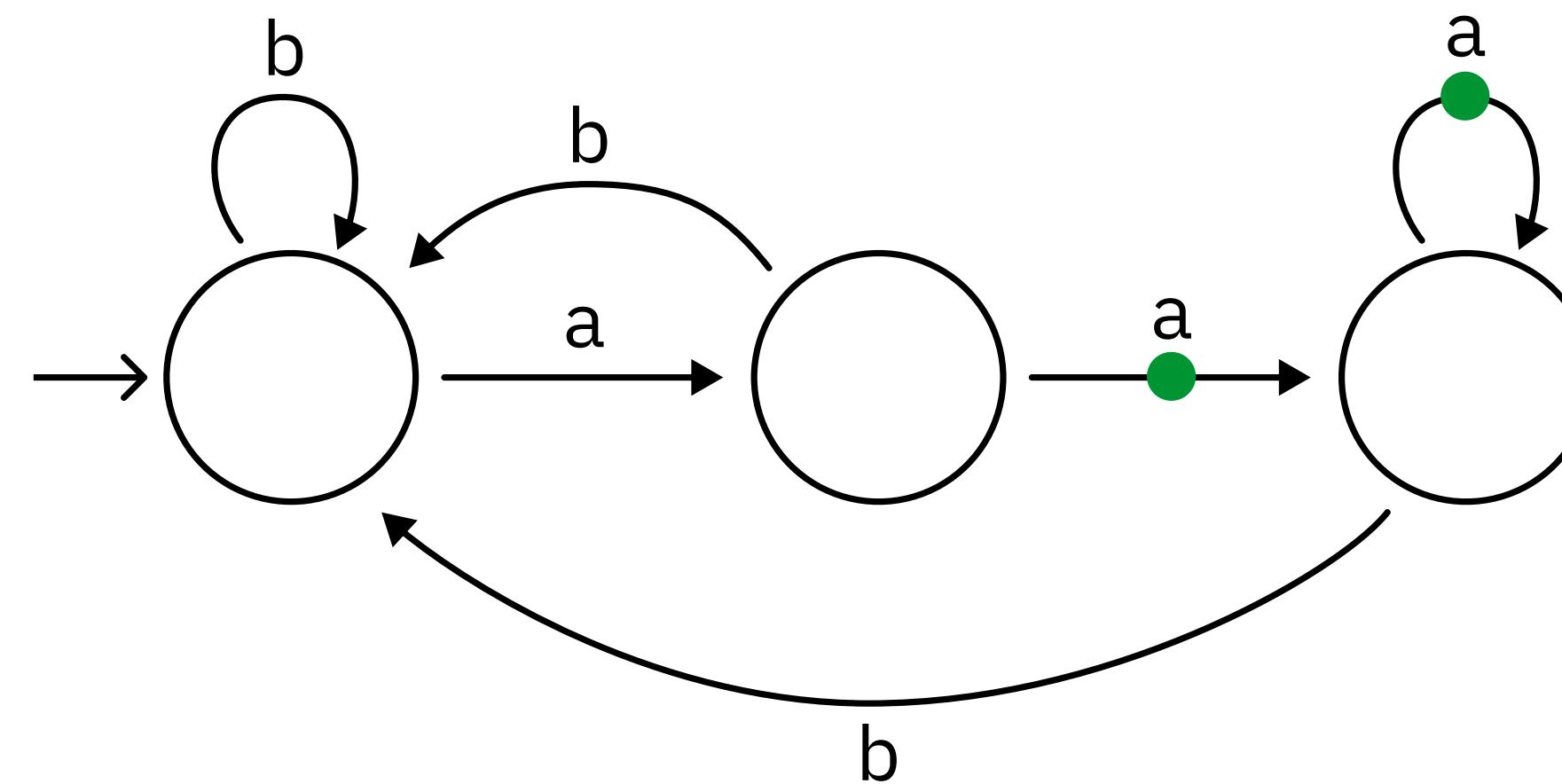
In general, there is no unique minimal deterministic ω -automata for a given ω -regular language.

(Van, Le Saëc, Litovsky '95)

Characterization of languages L that admit a unique minimal deterministic Muller automaton.

Transition-based!

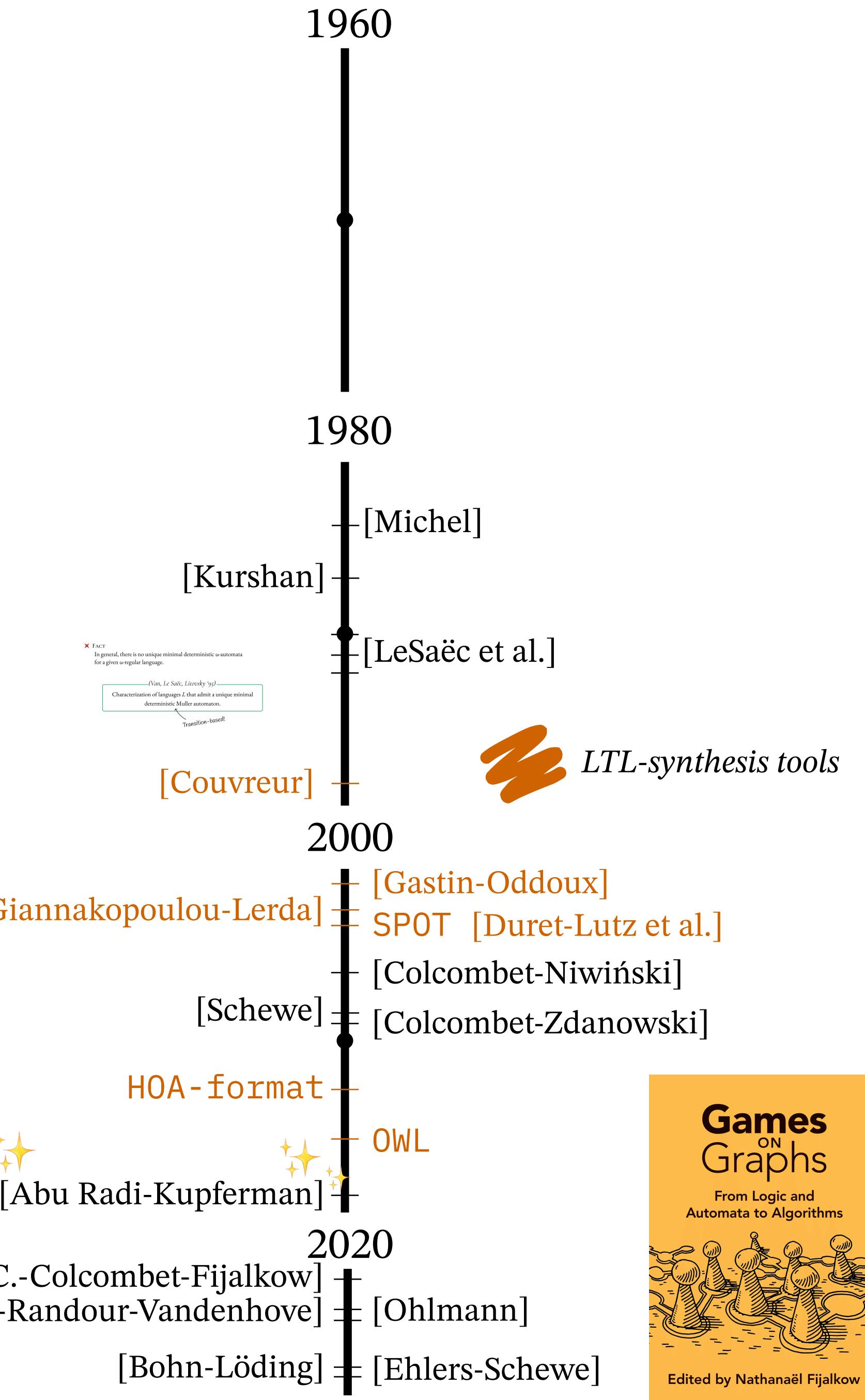
A transition-based ω -automaton



$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often} \subseteq \Sigma^\omega$$

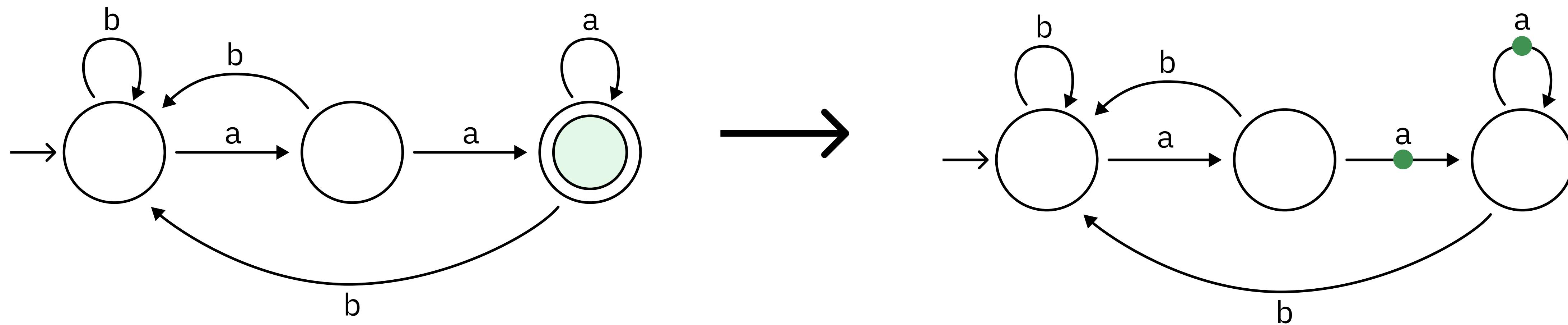
Büchi condition: We accept if visited infinitely often

Similar for Rabin, parity....



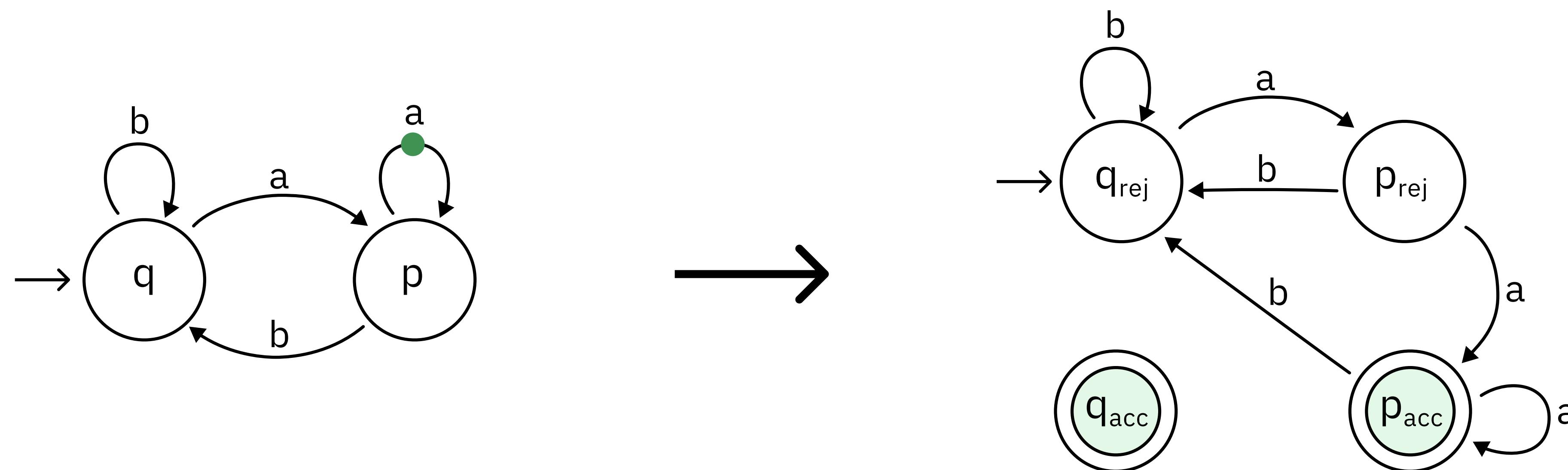
Both models are equivalent

From states to transitions



No extra states needed

From transitions to states



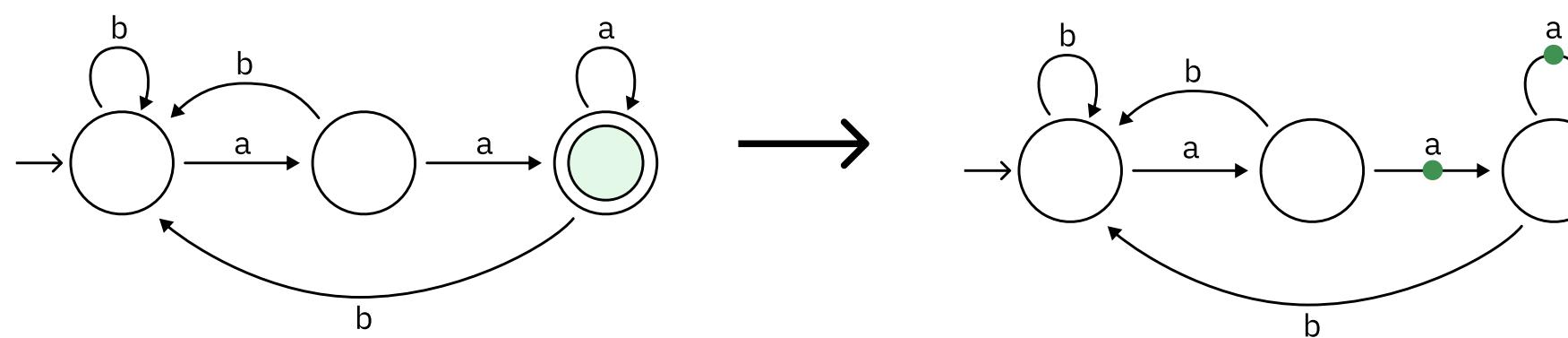
$$\mathcal{L}(\mathcal{A}) = \text{Words containing 'aa' infinitely often}$$

We may need to double the number of states

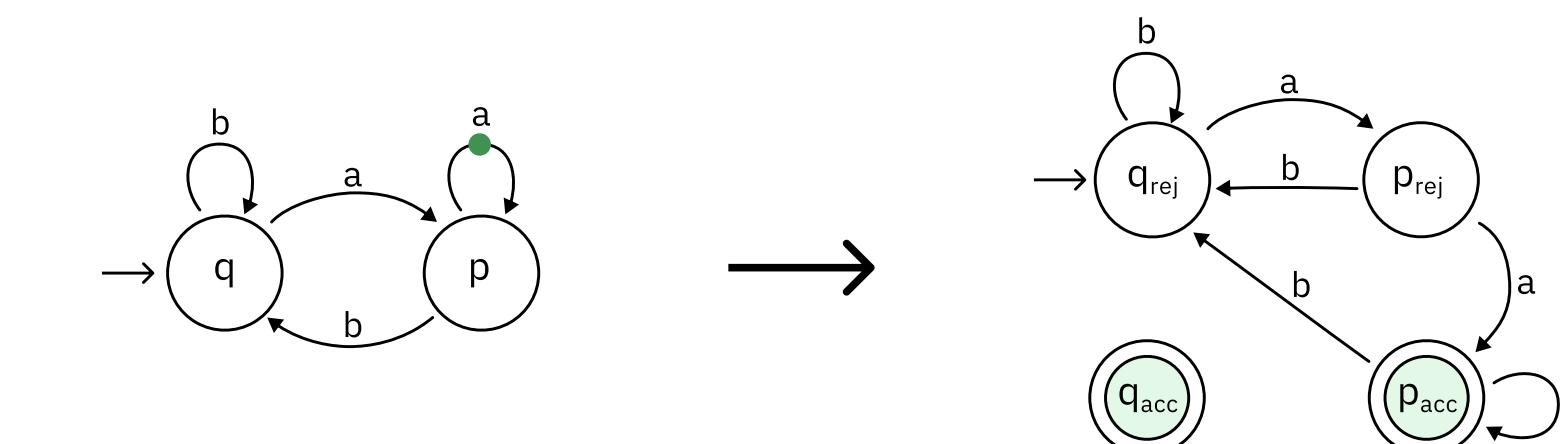
not so

Both models are equivalent

From states to transitions



From transitions to states



$\mathcal{L}(\mathcal{A}) =$ Words containing 'aa' infinitely often

No extra states needed

We may need to double the number of states

- ★ Transition-based automata are smaller

From transitions to states optimally:

Input: Transition-based Büchi automaton

Question: What is the minimal number of states that we need to duplicate to obtain an equivalent state-based automaton?

- ✗ This problem is NP-complete! *(Schewe '09 - C. '23)*

*SOURCE OF
NON-CANONICITY*

Minimisation

A landscape of problems

States

✖ THEOREM (*Schewe '09*)

Minimisation of deterministic state-based Büchi automata is NP-complete.

Transitions

The reduction does not generalise

✖ THEOREM (*Schewe '20*)

Minimisation of state-based history-deterministic coBüchi automata is NP-complete.

✚ THEOREM (*Abu Radi-Kupferman '19*)

Minimisation of transitions-based history-deterministic coBüchi automata in PTIME.

States

- ✖ THEOREM (*Schewe '09*)
Minimisation of deterministic state-based Büchi automata is NP-complete.
- ✖ THEOREM (*Schewe '20*)
Minimisation of state-based history-deterministic coBüchi automata is NP-complete.

Transitions

- ✖ THEOREM (*Abu Radi-Ehlers '25*)
Minimisation of deterministic transition-based Büchi automata is NP-complete.
- ★ THEOREM (*Abu Radi-Kupferman '19*)
Minimisation of transitions-based history-deterministic coBüchi automata in PTIME.

Highly technical

Minimisation

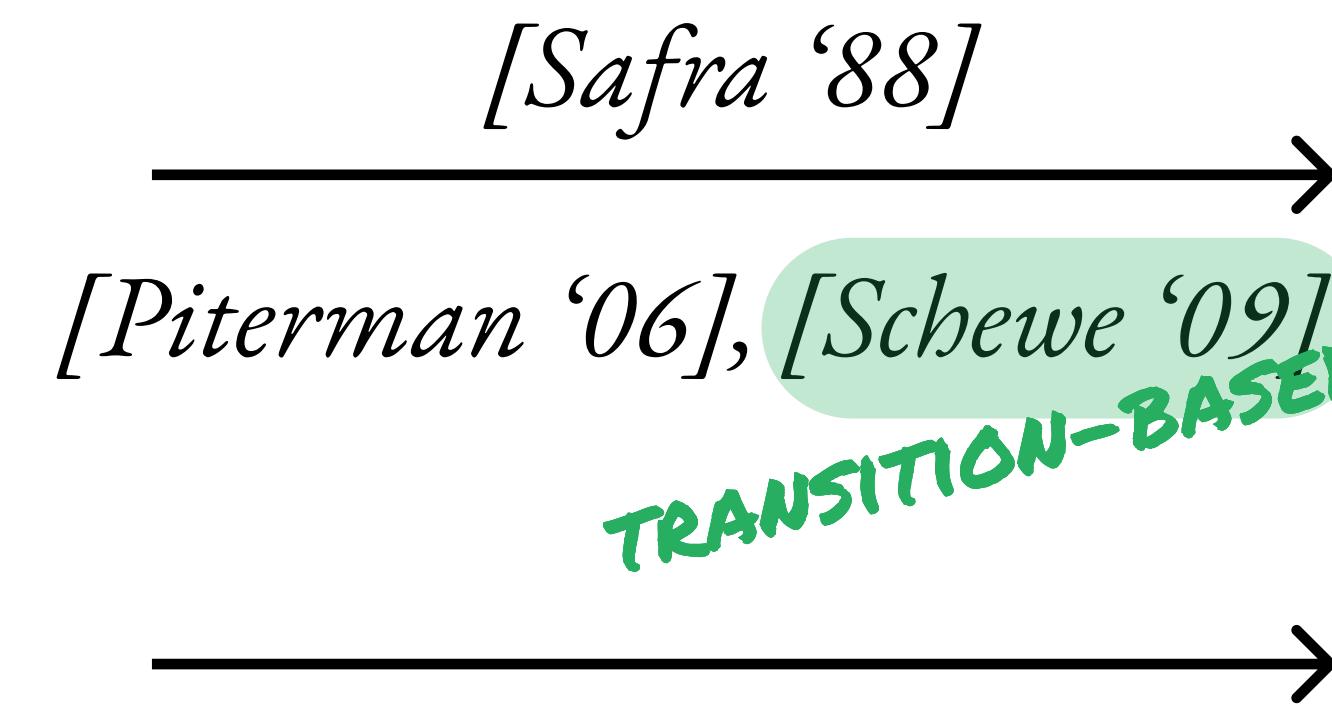
States	Transitions
✖ THEOREM (Schewe '09) Minimisation of deterministic state-based Büchi automata is NP-complete.	✖ THEOREM (Abu Radi-Ehlers '25) Minimisation of deterministic transition-based Büchi automata is NP-complete. <i>Highly technical</i>
✖ THEOREM (Schewe '20) Minimisation of state-based history-deterministic coBüchi automata is NP-complete.	✖ THEOREM (Abu Radi-Kupferman '19) Minimisation of transitions-based history-deterministic coBüchi automata in PTIME.

Determinisation

A landscape of problems

ND Büchi Automaton

Automaton of size n



Deterministic Rabin
Automaton

Automaton of size
 $\det(n) \simeq (1.66n)^n$

★ THEOREM (*tight bounds*) (*Colcombet-Zdanowski '09*)
There are ND Büchi automata of size n , such that a minimal equivalent
transition-based deterministic Rabin automaton has size exactly $\det(n)$.

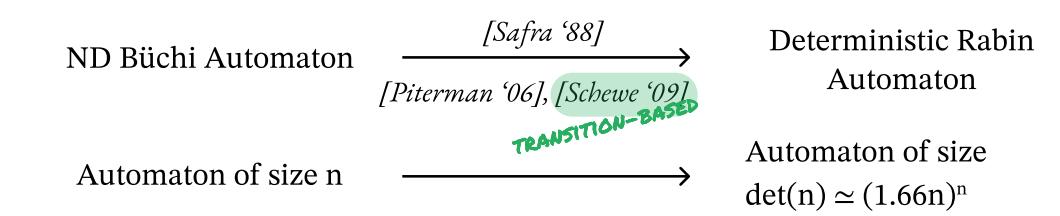
TIGHT UP TO
O STATES!

✗ No such tight bounds for state-based automata

Minimisation

States	Transitions
✗ THEOREM (Schewe '09) Minimisation of deterministic state-based Büchi automata is NP-complete.	✗ THEOREM (Abu Radi-Ehlers '25) Minimisation of deterministic transition-based Büchi automata is NP-complete. <i>Highly technical</i>
✗ THEOREM (Schewe '20) Minimisation of state-based history-deterministic coBüchi automata is NP-complete.	★ THEOREM (Abu Radi-Kupferman '19) Minimisation of transitions-based history-deterministic coBüchi automata in PTIME.

Determinisation



★ THEOREM (tight bounds) (Colcombet-Zdanowski '09)
There are ND Büchi automata of size n , such that a minimal equivalent **transition-based** deterministic Rabin automaton has size exactly $\det(n)$.
TIGHT UP TO 0 STATES!

✗ No such tight bounds for state-based automata

A landscape of problems

Automata Transformations

Generalised-Büchi Automaton

$\{\bullet_1, \bullet_2, \dots, \bullet_k\}$

See all colours inf. often

Büchi Automaton (Extra states)
See \bullet inf. often

Generalised-Büchi Automaton

$\{\bullet_1, \bullet_2, \dots, \bullet_k\}$

See all colours inf. often

(always possible)

Büchi Automaton

See \bullet inf. often

(Extra states)

Input: Generalised-Büchi automaton

Question: What is the minimal number of states that we need to duplicate to define an equivalent Büchi automaton?

★ THEOREM (C.-Colcombet-Fijalkow '21)

PTIME for transition-based automata.

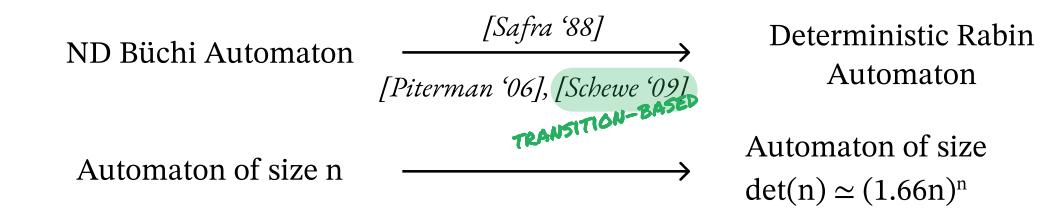
✗ THEOREM (C. '23)

NP-complete for state-based automata.

Minimisation

States	Transitions
✗ THEOREM (Schewe '09) Minimisation of deterministic state-based Büchi automata is NP-complete.	✗ THEOREM (Abu Radi-Ehlers '25) Minimisation of deterministic transition-based Büchi automata is NP-complete. <i>Highly technical</i>
✗ THEOREM (Schewe '20) Minimisation of state-based history-deterministic coBüchi automata is NP-complete.	★ THEOREM (Abu Radi-Kupferman '19) Minimisation of <u>transitions-based history-deterministic</u> coBüchi automata in PTIME.

Determinisation

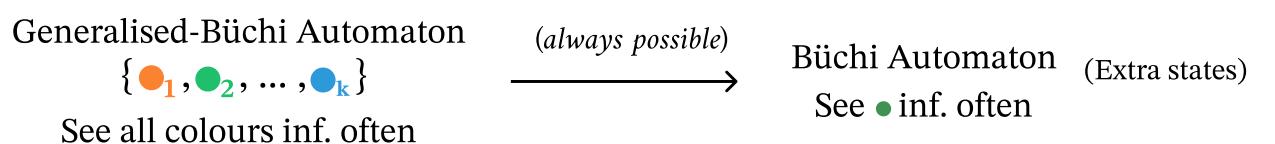


★ THEOREM (tight bounds) (Colcombet-Zdanowski '09)
There are ND Büchi automata of size n , such that a minimal equivalent transition-based deterministic Rabin automaton has size exactly $\det(n)$.
TIGHT UP TO $\det(n)$ STATES!

✗ No such tight bounds for state-based automata

A landscape of problems

Automata Transformations



Input: Generalised-Büchi automaton

Question: What is the minimal number of states that we need to duplicate to define an equivalent Büchi automaton?

Positionality in games

★ THEOREM (C.-Colcombet-Fijalkow '21)
PTIME for transition-based automata.

✗ THEOREM (C. '23)
NP-complete for state-based automata.

★ THEOREM (*Mostowski '84, Emerson-Jutla '91*)

Games using a parity language as winning condition are positionally determined.

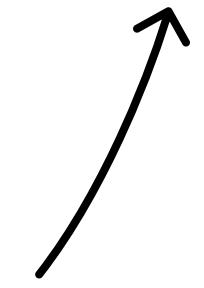
$$\text{parity}_{[0,d]} = \{w \in [0,d]^\omega \mid \limsup w \text{ is even}\}$$

★ THEOREM (*Colcombet-Niwiński '06*)

prefix-independent

The only languages L such that all games with condition L are positionally determined are parity languages.

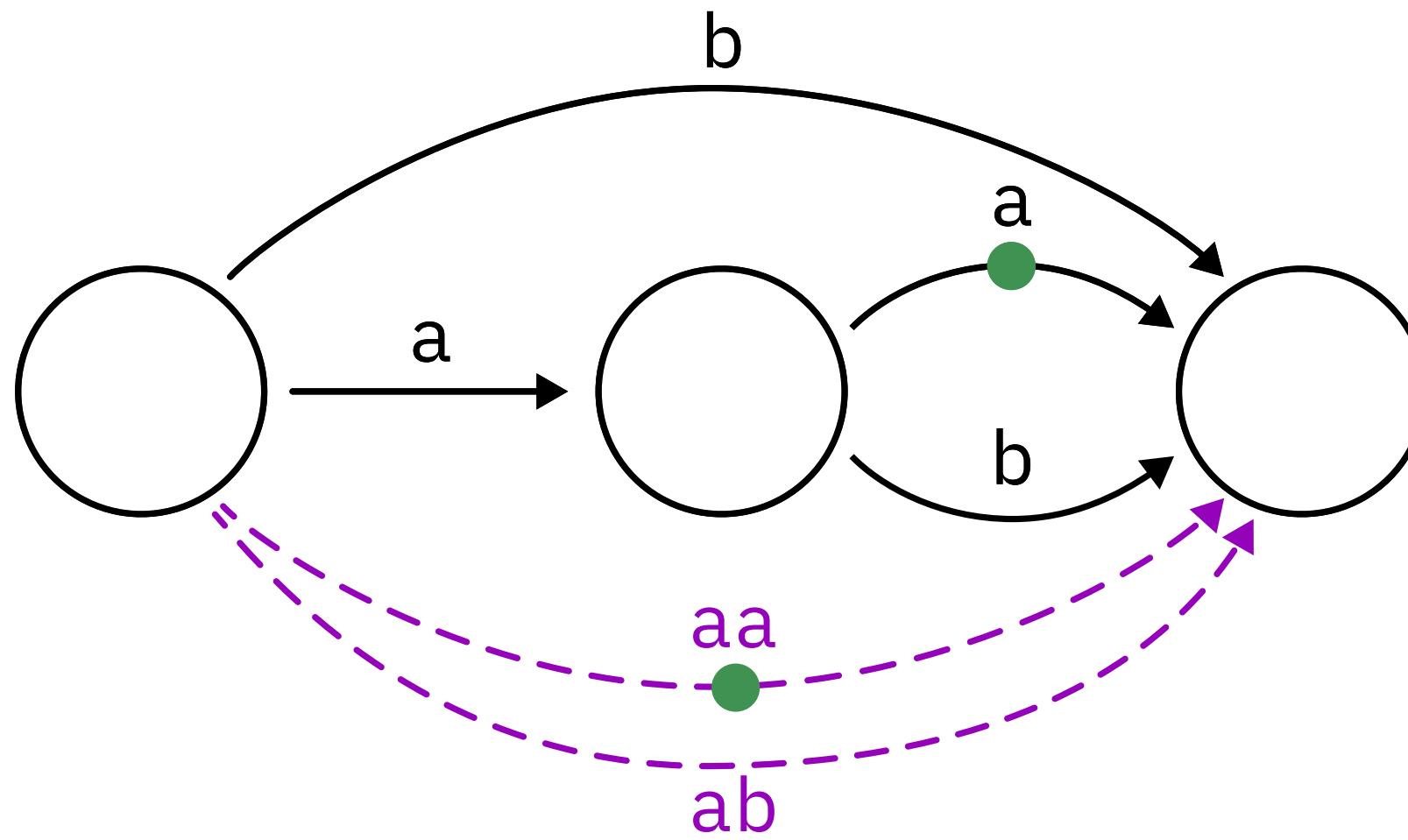
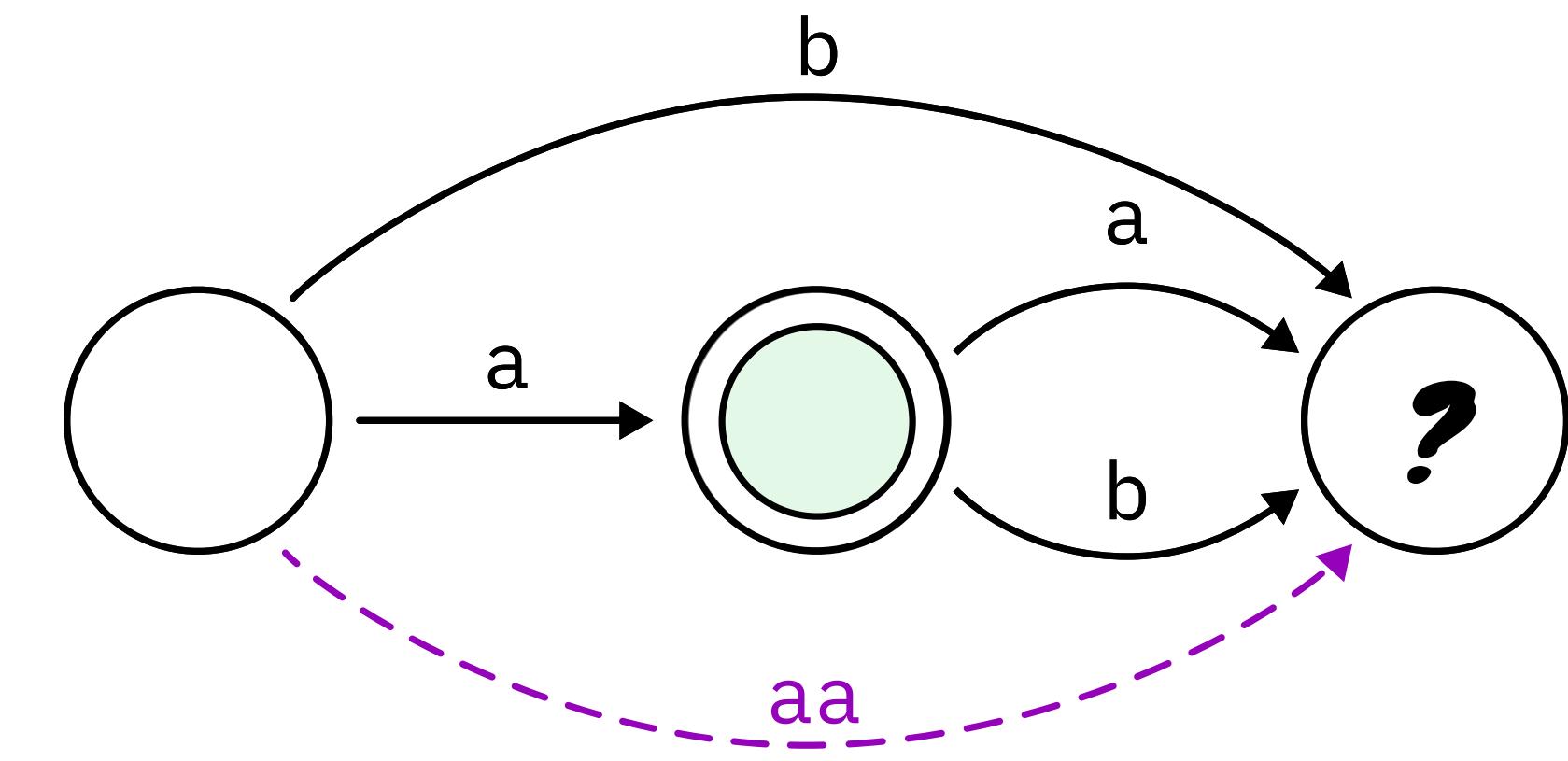
Over transition-based games!



✗ No characterisation for state-coloured games.

Why all these differences?

A natural algebraic operation



- ★ Compositionality
- ✗ No natural way of composing transitions
- ★ Connections with algebra [*Wilke '91, LeSaëc-Pin-Weil '91, Colcombet '11*]
- ★ Saturation techniques [*Colcombet-Fijalkow '18, Ohlmann '23, C.-Ohlmann '25*]

Conclusion

Transition-based models are better fitted for both theoretical and practical purposes.

Recent (transition-based) canonical models

★ HD-coBüchi automata

(Abu Radi-Kupferman '19)

A subclass of
 ω -regular languages

★ Chains of HD-coBüchi automata *(Ehlers-Schewe '22)*

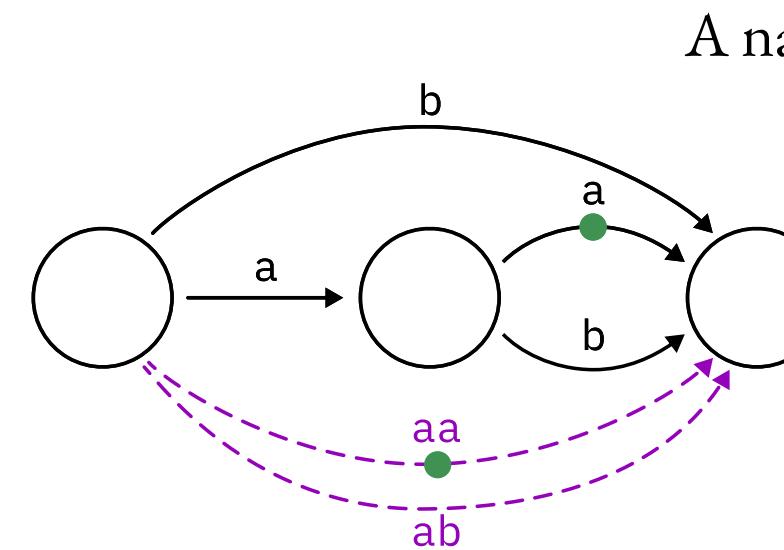
★ Rerailing automata *(Ehlers '25)*

★ Layered automata *(C.-Löding-Walukiewicz. Soon on arxiv!)*

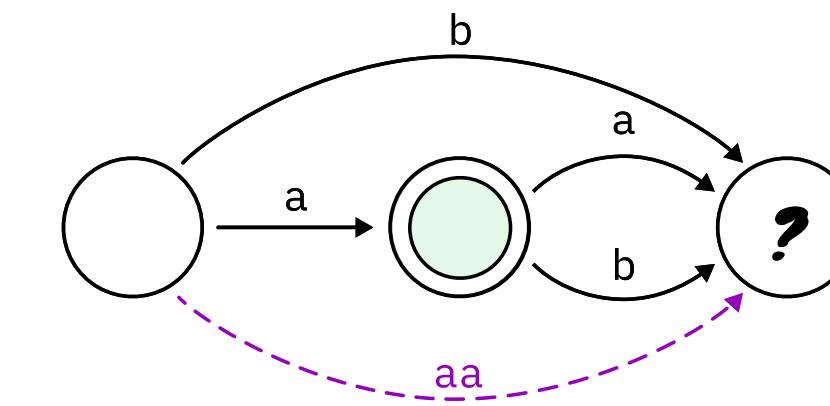
All ω -regular languages

- Canonicity expressed in terms of morphisms
- Congruence-based characterization

Why all these differences?



A natural algebraic operation



- ★ Compositionality
- ✗ No natural way of composing transitions
- ★ Connections with algebra [Wilke '91, LeSaëc-Pin-Weil '91, Colcombet '11]
- ★ Saturation techniques [Colcombet-Fijalkow '18, Ohlmann '23, C.-Ohlmann '25]

Conclusion

Transition-based models are better fitted for both theoretical and practical purposes.

Recent (transition-based) canonical models

All ω -regular languages

- ★ HD-coBüchi automata (Abu Radi-Kupferman '19)
A subclass of ω -regular languages
- ★ Chains of HD-coBüchi automata (Ehlers-Schewe '22)
- ★ Rerailing automata (Ehlers '25)
- ★ Layered automata (C.-Löding-Walukiewicz. Soon on arxiv!)
 - Canonicity expressed in terms of morphisms
 - Congruence-based characterization

Thanks for your attention!