

On the Intersection Problem for Quantum Automata

Flavio D'Alessandro¹

¹Sapienza Università di Roma

May 14, 2025

Content of the presentation

The $(\mathcal{L}, \mathcal{Q})$ Intersection Problem

\mathcal{L} is a family of languages and \mathcal{Q} is a model of computation

Given the language $L(Q)$ recognized by \mathcal{Q} and a language L in \mathcal{L} ,
it is decidable whether or not

$$L(Q) \cap L = \emptyset$$

Family \mathcal{L} : Context-free languages,

“Matrix” context-free languages

Model \mathcal{Q} : Quantum finite automata

(“measure-once” model

by Moore and Crutchfield, 2000)

Overview of the presentation

Introduction: Quantum finite automata

A general method for the decision problem: Algebraic groups

Results:

Bertoni, Choffrut and d. (2014)

Benso, d., and Papi (2024)

The measure once model

A **finite quantum automaton** is a quadruple $\mathcal{Q} = (s, \varphi, P, \lambda)$

- $s \in \mathbb{R}^n$ is a **row-vector** with $\|s\|^2 = s_1^2 + \dots + s_n^2 = 1$
- $\varphi : \Sigma^* \longrightarrow O_n$
is a **morphism** of the free monoid Σ^* into the group O_n of
orthogonal $n \times n$ -matrices in $\mathbb{R}^{n \times n}$
- P is a **projection** of \mathbb{R}^n i.e. $P \in \{0, 1\}^{n \times n}$ with $P^2 = P$
- λ is a given value in \mathbb{R} **threshold**

In the quantum automaton $\mathcal{Q} = (s, \varphi, P, \lambda)$

the morphism

$$\varphi : \Sigma^* \longrightarrow O_n$$

describes the computation of \mathcal{Q} on a word $w \in \Sigma^*$

$$w = \sigma_1 \cdots \sigma_\ell \longrightarrow \varphi(\sigma_1) \cdots \varphi(\sigma_\ell) = M$$

M orthogonal real matrix

M is orthogonal if $M^{-1} = M^T$

The output function of \mathcal{Q}

A **finite quantum automaton** is a quadruple $\mathcal{Q} = (s, \varphi, P, \lambda)$

- $s \in \mathbb{R}^n$ is a **row-vector of unit Euclidean norm**
- $\varphi : \Sigma^* \longrightarrow O_n$ **(morphism)**
- P is a **projection** of \mathbb{R}^n

$$w \in \Sigma^* \longrightarrow \|s\varphi(w)P\|^2$$

the **output** of w is the **square of the norm** of the vector

$$s \varphi(w) P$$

The languages accepted by \mathcal{Q}

$$|\mathcal{Q}_>| = \{w \in \Sigma^* : \|s\varphi(w)P\|^2 > \lambda\}$$

with strict threshold λ

$$|\mathcal{Q}_\geq| = \{w \in \Sigma^* : \|s\varphi(w)P\|^2 \geq \lambda\}$$

with non strict threshold λ

$$|\mathcal{Q}_<| = \{w \in \Sigma^* : \|s\varphi(w)P\|^2 < \lambda\}$$

$$|\mathcal{Q}_\leq| = \{w \in \Sigma^* : \|s\varphi(w)P\|^2 \leq \lambda\}$$

Measure-once Quantum Automata

- Description of **good-featured** quantum devices of ***small size***
- Mereghetti, Palano, Cialdi, Vento, Paris, Olivares, 2020

Method for the physical implementation of measure-once quantum automata for the recognition of periodic languages

THE DECISION PROBLEMS

The Emptiness Problem

INPUT: a finite quantum automaton \mathcal{Q}

QUESTION: $|\mathcal{Q}_\#| \cap \Sigma^* = \emptyset$ where

$|\mathcal{Q}_\#| = \{w \in \Sigma^* : \|s\varphi(w)P\|^2 \# \lambda\}$ and

$\#$ can be $>$, $<$, \geq , \leq

\mathcal{Q} is **rational**, i.e. the coefficients of the representation

$\mathcal{Q} = (s, \varphi, P, \lambda)$ are in \mathbb{Q}

The Emptiness Problem EP

$$|\mathcal{Q}_\#| \cap \Sigma^* = \emptyset$$

- Blondel, Jeandel, Koiran, Portier (2005)
EP is **decidable** if $\# \in \{<, >\}$ strict threshold
- Bertoni (1975, 1977)
EP is **undecidable** w.r.t. probabilistic automata
- EP is **un-decidable** for
 - the non-strict case (**measure-once model**)
Blondel et al. (2005)
 - both cases (**measure-many model**) Jeandel (2002)

The Intersection Problem IP

INPUT: ordered pair $(\mathcal{L}, \mathcal{Q})$ where:

\mathcal{L} is a family of effectively defined formal languages

\mathcal{Q} is an arbitrary finite (rational) quantum automaton

QUESTION:

$$|\mathcal{Q}_>| \cap L = \emptyset, \quad L \in \mathcal{L}$$

If $\mathcal{L} = \{\Sigma^*\}$ then one gets the Emptiness Problem

A method for the decision
problem: Algebraic groups

Reformulate the Intersection Problem

$$|\mathcal{Q}_>| = \{ w \in \Sigma^* : \|s\varphi(w)P\|^2 > \lambda \} \quad |\mathcal{Q}_>| \cap L = \emptyset \iff$$

$$\forall w \in L \quad f(w) = \|s\varphi(w)P\|^2 \leq \lambda \iff$$

$$\forall M \in \varphi(L) \quad f(M) := \|sMP\|^2 \leq \lambda \quad (1)$$

GOAL: **decidable construct** to test whether (1) holds or not

$$\forall M \in \varphi(L) \quad f(M) = \|sMP\|^2 \leq \lambda \quad (1) \quad \iff$$

$$\forall M \in \mathbf{Cl}(\varphi(L)) \quad f(M) = \|sMP\|^2 \leq \lambda$$

where $\mathbf{Cl}(\varphi(L))$ is the closure of $\varphi(L)$ with the Euclidean Topology on the space of matrices $\mathbb{R}^{n \times n}$

The function $f : M \longrightarrow \|sMP\|^2$ is continuous with the Euclidean Topology

$$\forall M \in \mathbf{Cl}(\varphi(L)) \quad f(M) \leq \lambda \quad (1)$$

- Consider the predicate over $\mathbb{Q}^{n \times n}$

$$\text{InClosure}(X) \equiv X \in \mathbf{Cl}(\varphi(L))$$

- If $\text{InClosure}(X)$ is **first-order definable** in $(\mathbb{R}, +, \cdot)$, then

$$\forall X \in \mathbb{Q}^{n \times n} : \text{InClosure}(X) \implies \|sXP\|^2 \leq \lambda \quad (2)$$

is also **first-order definable** in $(\mathbb{R}, +, \cdot)$ and corresponds to

$$\forall M \in \mathbf{Cl}(\varphi(L)) \quad \|sMP\|^2 \leq \lambda \quad (1)$$

- Apply **Tarski-Seidenberg Quantifier Elimination Method** to (2)

Blondel, Jeandel, Koiran, Portier (2005)

GOAL: Construction of a formula for **InClosure**

(Emptiness Problem) $\mathcal{L} = \{\Sigma^*\}$ free monoid over Σ

$\mathbf{Cl}(\varphi(\Sigma^*))$ is an effective algebraic set (over \mathbb{R}), i.e.,
one can construct a polynomial $p \in \mathbb{R}[x_{11}, \dots, x_{nn}]$ such that

$$M \in \mathbb{Q}^{n \times n}, \quad M \in \mathbf{Cl}(\varphi(\Sigma^*)) \iff p(M) = 0$$

$$\text{InClosure}(X) \equiv X \in \mathbb{Q}^{n \times n} : p(X) = 0$$

Group O_2 of orthogonal matrices of order 2

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \in O_2 \iff MM^T = I \iff$$

$$\begin{pmatrix} m_{11}^2 + m_{12}^2 & m_{11}m_{21} + m_{12}m_{22} \\ m_{11}m_{21} + m_{12}m_{22} & m_{21}^2 + m_{22}^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

M is **orthogonal** if and only if is **zero** of the polynomials:

$$p_1(m_{11}, m_{12}, m_{21}, m_{22}) = m_{11}^2 + m_{12}^2 - 1$$

$$p_2(m_{11}, m_{12}, m_{21}, m_{22}) = m_{11}m_{21} + m_{12}m_{22}$$

$$p_3(m_{11}, m_{12}, m_{21}, m_{22}) = m_{21}^2 + m_{22}^2 - 1$$

Derksen, Jeandel, Koiran (2005)

Algorithm which, given a finite set S of invertible matrices,
computes the Zariski closure $\overline{\langle S \rangle}$ of the group generated by these
matrices

Nosan, Pouly, Schmitz, Shirmohammadi, Worrell (2022)

Alternative approach for the computation of the Zariski closure $\overline{\langle S \rangle}$

of the group generated by a finite set S of invertible matrices

- ▶ it provides a bound on the degree of the polynomials that define the $\overline{\langle S \rangle}$
- ▶ $\overline{\langle S \rangle}$ can be computed in elementary time

Hrushovski, Ouaknine, Pouly, Worrell (2023)

Computation of the Zariski closure $\overline{S^*}$ of the monoid S^* generated by a finite set S of (not necessarily invertible) matrices

- ▶ Computation of polynomial invariants for affine programs
- ▶ Application to the Burnside Problem for Semigroups:
decidability of the finiteness of a finitely generated semigroup
of rational matrices (Mandel and Simon 1977, Jacob 1978)

Membership Problem $\text{MP}(\mathbb{K}, n)$

Semigroup $\mathbb{K}^{n \times n}$ of matrices, over a ring \mathbb{K} , of size n

$\text{MP}(\mathbb{K}, n)$: given a finite subset S of $\mathbb{K}^{n \times n}$, and an element $M \in \mathbb{K}^{n \times n}$, decide whether $M \in S^*$

- Paterson (1970): $\text{MP}(\mathbb{Z}, 3)$ is undecidable
- Potapov and Semukhin (2017): $\text{MP}(\mathbb{Z}, 2)$ is decidable
(the matrices of S are non-singular)

The Intersection Problem for Context-free Languages

Results

Context-free Grammars

$$G = \langle V, \Sigma, P, S \rangle$$

V is the set of variables $S \in V$ is the start symbol

Σ is the set of terminal symbols

P is the set of productions

$$A \rightarrow \alpha, \quad A \in V, \quad \alpha \in (V \cup \Sigma)^*$$

Derivation Relation: $\xrightarrow{*}$

Language generated by G :

$$L(G) = \{ w \in \Sigma^* : S \xrightarrow{*} w \}$$

The Set of cycles of A

With each variable $A \in V$ associate the subset of $\Sigma^* \times \Sigma^*$

$$C_A = \{ (u, v) \in \Sigma^* \times \Sigma^* : A \xrightarrow{*} uAv \}$$

Ginsburg and Spanier techniques (1966)

sets of cycles are used for the combinatorial structuring of the derivations of a context-free grammar (decision methods)

The Monoid of Cycles

$$C_A = \{ (u, v) \in \Sigma^* \times \Sigma^* : A \xrightarrow{*} uAv \}$$

We associate with C_A the set of orthogonal matrices

$$M_A = \left\{ \begin{pmatrix} \varphi(u) & 0 \\ 0 & \varphi(v)^T \end{pmatrix} : A \xrightarrow{*} uAv \right\}$$

where $\varphi : \Sigma^* \longrightarrow O_n$ is the morphism of the automaton \mathcal{Q}

CRUCIAL FACT: M_A is a monoid (the monoid of cycles of A)

Monoids of cycles and the IP

The study of the IP reduces to two ingredients:

- $\mathbf{Cl}(M_A)$ is an algebraic set (machinery to compute the algebraic closure of matrices)
- *Ginsburg and Spanier - like* techniques:
suitably defined effective structuring of the derivations of G

Bertoni, Choffrut, and d. (2014)

- If $L \in \text{CFL}$ then $\mathbf{Cl}(\varphi(L))$ is **semialgebraic**, that is,
 $\mathbf{Cl}(\varphi(L))$ is the set of matrices satisfying a finite Boolean combination of predicates of polynomial form

$$p(x_{11}, \dots, x_{nn}) > 0 \quad \text{or} \quad p(x_{11}, \dots, x_{nn}) = 0$$

for some polynomials p in $\mathbb{R}[x_{11}, \dots, x_{nn}]$

- If all $\mathbf{Cl}(M_A)$ are **effectively algebraic** then $\mathbf{Cl}(\varphi(L))$ is **computable**

Bertoni, Choffrut, and d. (2014)

The **Intersection Problem** is **decidable** for:

- Linear context-free languages
- Bounded semi-linear languages, i.e., languages of the form

$$L \subseteq u_1^* \cdots u_k^*, \quad u_1, \dots, u_k \in \Sigma^*$$

accepted by **Reversal bounded non deterministic counter machines**

REASON: $\mathbf{Cl}(\varphi(L))$ is **computable** since **all** the monoids M_A are **finitely generated** and thus $\mathbf{Cl}(M_A)$ **computable**

Example

$$L = \{uu^\sim : u \in \Sigma^*\}, \quad \Sigma = \{a, b\}$$

L is generated by the grammar G whose productions are:

$$p_0 = (S \longrightarrow \varepsilon)$$

$$\sigma \in \Sigma, \quad p_\sigma = (S \longrightarrow \sigma S \sigma)$$

Example

$$L = \{uu^\sim : u \in \Sigma^*\}, \quad \Sigma = \{a, b\}$$

Given a matrix $M \in \mathbb{R}^{n \times n}$

$$M \in \varphi(L) \iff M = \varphi(u)\varphi(u^\sim) = \varphi(\sigma_1) \cdots \varphi(\sigma_k) \varphi(\sigma_k) \cdots \varphi(\sigma_1)$$

$\mathcal{N} = \{\varphi(a) \oplus \varphi(a)^T, \varphi(b) \oplus \varphi(b)^T\}^*$ is the monoid generated by

$$\sigma \in \Sigma, \quad \varphi(\sigma) \oplus \varphi(\sigma)^T := \begin{pmatrix} \varphi(\sigma) & \mathbf{0} \\ \mathbf{0} & \varphi(\sigma)^T \end{pmatrix}$$

$$M \in \mathcal{N} \iff M = \begin{pmatrix} \varphi(u) & \mathbf{0} \\ \mathbf{0} & \varphi(u)^T \end{pmatrix}$$

Example

$$M \in \mathcal{N} \iff M = \begin{pmatrix} \varphi(u) & \mathbf{0} \\ \mathbf{0} & \varphi(u)^T \end{pmatrix}$$

$$M \in \mathbf{Cl}(\varphi(L)) \iff M \in \mathbf{Cl}(\{\varphi(u)\varphi(u)^T : u \in \Sigma^*\}) \iff$$

$$\exists X \exists Y : M = XY \wedge X \oplus Y = \begin{pmatrix} X & \mathbf{0} \\ \mathbf{0} & Y \end{pmatrix} \in \mathbf{Cl}(\mathcal{N})$$

$\mathbf{Cl}(\mathcal{N})$ is **algebraic**, i.e., for some computable polynomial P

$$\mathbf{Cl}(\mathcal{N}) = \{M \in \mathbb{R}^{2n \times 2n} : P(M) = 0\}$$

$$M \in \mathbf{Cl}(\varphi(L)) \iff \exists X \exists Y : M = XY \wedge P(X \oplus Y) = 0$$

Thank you for your attention